Welcome to LookChem.com Sign In|Join Free

CAS

  • or

72846-70-9

Post Buying Request

72846-70-9 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

72846-70-9 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 72846-70-9 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 7,2,8,4 and 6 respectively; the second part has 2 digits, 7 and 0 respectively.
Calculate Digit Verification of CAS Registry Number 72846-70:
(7*7)+(6*2)+(5*8)+(4*4)+(3*6)+(2*7)+(1*0)=149
149 % 10 = 9
So 72846-70-9 is a valid CAS Registry Number.

72846-70-9SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 18, 2017

Revision Date: Aug 18, 2017

1.Identification

1.1 GHS Product identifier

Product name 2-methyl-1-phenyl-propan-1-one oxime

1.2 Other means of identification

Product number -
Other names 2-methyl-1-phenylpropan-1-one oxime

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:72846-70-9 SDS

72846-70-9Relevant articles and documents

Pharmacological characterization of a new series of carbamoylguanidines reveals potent agonism at the H2R and D3R

Biselli, Sabrina,Bresinsky, Merlin,Buschauer, Armin,Forster, Lisa,Honisch, Claudia,Pockes, Steffen,Tropmann, Katharina,Bernhardt, Günther

supporting information, (2021/02/12)

Even today, the role of the histamine H2 receptor (H2R) in the central nervous system (CNS) is widely unknown. In previous research, many dimeric, high-affinity and subtype-selective carbamoylguanidine-type ligands such as UR-NK22 (5, pKi = 8.07) were reported as H2R agonists. However, their applicability to the study of the H2R in the CNS is compromised by their molecular and pharmacokinetic properties, such as high molecular weight and, consequently, a limited bioavailability. To address the need for more drug-like H2R agonists with high affinity, we synthesized a series of monomeric (thio)carbamoylguanidine-type ligands containing various spacers and side-chain moieties. This structural simplification resulted in potent (partial) agonists (guinea pig right atrium, [35S]GTPγS and β-arrestin2 recruitment assays) with human (h) H2R affinities in the one-digit nanomolar range (pKi (139, UR-KAT523): 8.35; pKi (157, UR-MB-69): 8.69). Most of the compounds presented here exhibited an excellent selectivity profile towards the hH2R, e.g. 157 being at least 3800-fold selective within the histamine receptor family. The structural similarities of our monomeric ligands to pramipexole (6), a dopamine receptor agonist, suggested an investigation of the binding behavior at those receptors. The target compounds were (partial) agonists with moderate affinity at the hD2longR and agonists with high affinity at the hD3R (e.g. pKi (139, UR-KAT523): 7.80; pKi (157, UR-MB-69): 8.06). In summary, we developed a series of novel, more drug-like H2R and D3R agonists for the application in recombinant systems in which either the H2R or the D3R is solely expressed. Furthermore, our ligands are promising lead compounds in the development of selective H2R agonists for future in vivo studies or experiments utilizing primary tissue to unravel the role and function of the H2R in the CNS.

Copper-catalyzed synthesis of oxime ethers from iminoxy radical (C[dbnd]N–O[rad]) and maleimides via radical addition

Han, Ziwei,Shen, Subo,Zheng, Feng,Hu, Han,Zhang, Jianmin,Zhu, Shizheng

supporting information, (2019/09/30)

An efficient Cu(II)-catalyzed radical addition of maleimides has been achieved. The identified copper catalyst enables the formation of oxime radicals (N–O[rad]) by cleaving the O–H bond in ketoximes, followed by the radical addition to N-substituted male

Scope and mechanism of a true organocatalytic beckmann rearrangement with a boronic acid/perfluoropinacol system under ambient conditions

Mo, Xiaobin,Morgan, Timothy D. R.,Ang, Hwee Ting,Hall, Dennis G.

supporting information, p. 5264 - 5271 (2018/04/24)

Catalytic activation of hydroxyl functionalities is of great interest for the production of pharmaceuticals and commodity chemicals. Here, 2-alkoxycarbonyl- and 2-phenoxycarbonyl-phenylboronic acid were identified as efficient catalysts for the direct and chemoselective activation of oxime N-OH bonds in the Beckmann rearrangement. This classical organic reaction provides a unique approach to prepare functionalized amide products that may be difficult to access using traditional amide coupling between carboxylic acids and amines. Using only 5 mol % of boronic acid catalyst and perfluoropinacol as an additive in a polar solvent mixture, the operationally simple protocol features mild conditions, a broad substrate scope, and a high functional group tolerance. A wide variety of diaryl, aryl-alkyl, heteroaryl-alkyl, and dialkyl oximes react under ambient conditions to afford high yields of amide products. Free alcohols, amides, carboxyesters, and many other functionalities are compatible with the reaction conditions. Investigations of the catalytic cycle revealed a novel boron-induced oxime transesterification providing an acyl oxime intermediate involved in a fully catalytic nonself-propagating Beckmann rearrangement mechanism. The acyl oxime intermediate was prepared independently and was subjected to the reaction conditions. It was found to be self-sufficient; it reacts rapidly, unimolecularly without the need for free oxime. A series of control experiments and 18O labeling studies support a true catalytic pathway involving an ionic transition structure with an active and essential role for the boronyl moiety in both steps of transesterification and rearrangement. According to 11B NMR spectroscopic studies, the additive perfluoropinacol provides a transient, electrophilic boronic ester that is thought to serve as an internal Lewis acid to activate the ortho-carboxyester and accelerate the initial, rate-limiting step of transesterification between the precatalyst and the oxime substrate.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 72846-70-9