Welcome to LookChem.com Sign In|Join Free

CAS

  • or

73543-67-6

Post Buying Request

73543-67-6 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

73543-67-6 Usage

Description

9(S)-HODE is produced by the lipoxygenation of linoleic acid in both plants and animals. It has been detected in atherosclerotic plaques, as an esterified component of membrane phospholipids and in oxidized LDL particles.

Definition

ChEBI: A 9-HODE in which the 9-hydroxy group has S-stereochemistry.

Check Digit Verification of cas no

The CAS Registry Mumber 73543-67-6 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 7,3,5,4 and 3 respectively; the second part has 2 digits, 6 and 7 respectively.
Calculate Digit Verification of CAS Registry Number 73543-67:
(7*7)+(6*3)+(5*5)+(4*4)+(3*3)+(2*6)+(1*7)=136
136 % 10 = 6
So 73543-67-6 is a valid CAS Registry Number.
InChI:InChI=1/C18H32O3/c1-2-3-4-5-6-8-11-14-17(19)15-12-9-7-10-13-16-18(20)21/h6,8,11,14,17,19H,2-5,7,9-10,12-13,15-16H2,1H3,(H,20,21)/b8-6-,14-11+/t17-/m1/s1

73543-67-6 Well-known Company Product Price

  • Brand
  • (Code)Product description
  • CAS number
  • Packaging
  • Price
  • Detail
  • Sigma

  • (SML0503)  9(S)-HODE  ≥98% (HPLC)

  • 73543-67-6

  • SML0503-100UG

  • 1,276.47CNY

  • Detail
  • Sigma

  • (SML0503)  9(S)-HODE  ≥98% (HPLC)

  • 73543-67-6

  • SML0503-500UG

  • 5,153.85CNY

  • Detail

73543-67-6SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 12, 2017

Revision Date: Aug 12, 2017

1.Identification

1.1 GHS Product identifier

Product name 9(S)-HODE

1.2 Other means of identification

Product number -
Other names 9-HOD

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:73543-67-6 SDS

73543-67-6Relevant articles and documents

Oxygenation reactions catalyzed by the F557V mutant of soybean lipoxygenase-1: Evidence for two orientations of substrate binding

Hershelman, Dillon,Kahler, Kirsten M.,Price, Morgan J.,Lu, Iris,Fu,Plumeri, Patricia A.,Karaisz, Fred,Bassett, Natasha F.,Findeis, Peter M.,Clapp, Charles H.

, (2019/09/10)

Plant lipoxygenases oxygenate linoleic acid to produce 13(S)-hydroperoxy-9Z,11E-octadecadienoic acid (13(S)-HPOD) or 9-hydroperoxy-10E,12Z-octadecadienoic acid (9(S)-HPOD). The manner in which these enzymes bind substrates and the mechanisms by which they control regiospecificity are uncertain. Hornung et al. (Proc. Natl. Acad. Sci. USA 96 (1999) 4192–4197) have identified an important residue, corresponding to phe-557 in soybean lipoxygenase-1 (SBLO-1). These authors proposed that large residues in this position favored binding of linoleate with the carboxylate group near the surface of the enzyme (tail-first binding), resulting in formation of 13(S)-HPOD. They also proposed that smaller residues in this position facilitate binding of linoleate in a head-first manner with its carboxylate group interacting with a conserved arginine residue (arg-707 in SBLO-1), which leads to 9(S)-HPOD. In the present work, we have tested these proposals on SBLO-1. The F557V mutant produced 33% 9-HPOD (S:R = 87:13) from linoleic acid at pH 7.5, compared with 8% for the wild-type enzyme and 12% with the F557V,R707L double mutant. Experiments with 11(S)-deuteriolinoleic acid indicated that the 9(S)-HPOD produced by the F557V mutant involves removal of hydrogen from the pro-R position on C-11 of linoleic acid, as expected if 9(S)-HPOD results from binding in an orientation that is inverted relative to that leading to 13(S)-HPOD. The product distributions obtained by oxygenation of 10Z,13Z-nonadecadienoic acid and arachidonic acid by the F557V mutant support the hypothesis that ω6 oxygenation results from tail-first binding and ω10 oxygenation from head-first binding. The results demonstrate that the regiospecificity of SBLO-1 can be altered by a mutation that facilitates an alternative mode of substrate binding and adds to the body of evidence that 13(S)-HPOD arises from tail-first binding.

Microbial Synthesis of Linoleate 9 S-Lipoxygenase Derived Plant C18 Oxylipins from C18 Polyunsaturated Fatty Acids

An, Jung-Ung,Lee, In-Gyu,Ko, Yoon-Joo,Oh, Deok-Kun

, p. 3209 - 3219 (2019/03/26)

Plant oxylipins, including hydroxy fatty acids, epoxy hydroxy fatty acids, and trihydroxy fatty acids, which are biosynthesized from C18 polyunsaturated fatty acids (PUFAs), are involved in pathogen-specific defense mechanisms against fungal infections. However, their quantitative biotransformation by plant enzymes has not been reported. A few bacteria produce C18 trihydroxy fatty acids, but the enzymes and pathways related to the biosynthesis of plant oxylipins in bacteria have not been reported. In this study, we first report the biotransformation of C18 PUFAs into plant C18 oxylipins by expressing linoleate 9S-lipoxygenase with and without epoxide hydrolase from the proteobacterium Myxococcus xanthus in recombinant Escherichia coli. Among the nine types of plant oxylipins, 12,13-epoxy-14-hydroxy-cis,cis-9,15-octadecadienoic acid was identified as a new compound by NMR analysis, and 9,10,11-hydroxy-cis,cis-6,12-octadecadienoic acid and 12,13,14-trihydroxy-cis,cis-9,15-octadecadienoic were suggested as new compounds by LC-MS/MS analysis. This study shows that bioactive plant oxylipins can be produced by microbial enzymes.

ω-alkynyl lipid surrogates for polyunsaturated fatty acids: Free radical and enzymatic oxidations

Beavers, William N.,Serwa, Remigiusz,Shimozu, Yuki,Tallman, Keri A.,Vaught, Melissa,Dalvie, Esha D.,Marnett, Lawrence J.,Porter, Ned A.

, p. 11529 - 11539 (2014/10/15)

Lipid and lipid metabolite profiling are important parameters in understanding the pathogenesis of many diseases. Alkynylated polyunsaturated fatty acids are potentially useful probes for tracking the fate of fatty acid metabolites. The nonenzymatic and enzymatic oxidations of ω-alkynyl linoleic acid and ω-alkynyl arachidonic acid were compared to that of linoleic and arachidonic acid. There was no detectable difference in the primary products of nonenzymatic oxidation, which comprised cis,trans-hydroxy fatty acids. Similar hydroxy fatty acid products were formed when ω-alkynyl linoleic acid and ω-alkynyl arachidonic acid were reacted with lipoxygenase enzymes that introduce oxygen at different positions in the carbon chains. The rates of oxidation of ω-alkynylated fatty acids were reduced compared to those of the natural fatty acids. Cyclooxygenase-1 and -2 did not oxidize alkynyl linoleic but efficiently oxidized alkynyl arachidonic acid. The products were identified as alkynyl 11-hydroxy-eicosatetraenoic acid, alkynyl 11-hydroxy-8,9-epoxy-eicosatrienoic acid, and alkynyl prostaglandins. This deviation from the metabolic profile of arachidonic acid may limit the utility of alkynyl arachidonic acid in the tracking of cyclooxygenase-based lipid oxidation. The formation of alkynyl 11-hydroxy-8,9-epoxy-eicosatrienoic acid compared to alkynyl prostaglandins suggests that the ω-alkyne group causes a conformational change in the fatty acid bound to the enzyme, which reduces the efficiency of cyclization of dioxalanyl intermediates to endoperoxide intermediates. Overall, ω-alkynyl linoleic acid and ω-alkynyl arachidonic acid appear to be metabolically competent surrogates for tracking the fate of polyunsaturated fatty acids when looking at models involving autoxidation and oxidation by lipoxygenases.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 73543-67-6