Welcome to LookChem.com Sign In|Join Free

CAS

  • or

74654-06-1

Post Buying Request

74654-06-1 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

74654-06-1 Usage

Description

m-PEG3-azide is a PEG linker containing an azide group. The azide group can react with alkyne, BCN, DBCO via Click Chemistry to yield a stable triazole linkage. The hydrophilic PEG spacer increases solubility in aqueous media.

Check Digit Verification of cas no

The CAS Registry Mumber 74654-06-1 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 7,4,6,5 and 4 respectively; the second part has 2 digits, 0 and 6 respectively.
Calculate Digit Verification of CAS Registry Number 74654-06:
(7*7)+(6*4)+(5*6)+(4*5)+(3*4)+(2*0)+(1*6)=141
141 % 10 = 1
So 74654-06-1 is a valid CAS Registry Number.

74654-06-1SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 17, 2017

Revision Date: Aug 17, 2017

1.Identification

1.1 GHS Product identifier

Product name 1-azido-2-[2-(2-methoxyethoxy)ethoxy]ethane

1.2 Other means of identification

Product number -
Other names 1-azido-triethylene glycol monomethyl ether

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:74654-06-1 SDS

74654-06-1Relevant articles and documents

Enhancing the efficacy of photodynamic therapy (PDT) via water-soluble pillar[5]arene-based supramolecular complexes

Wu, Jian,Tian, Jia,Rui, Leilei,Zhang, Weian

, p. 7629 - 7632 (2018)

A supramolecular nanovesicle was constructed by complexation between pyrophaeophorbide A (PPhA) and water-soluble pillar[5]arene, and then a biotin-pyridinium targeting agent was introduced to its surface. This nanovesicle exhibited reduced aggregation of PPhA photosensitizers and high targeting ability towards cancer cells, thereby leading to excellent therapeutic efficacy under red light.

[2 × 2] metallo-supramolecular grids based on 4,6-bis((1H-1,2,3-triazol-4-yl)-pyridin-2-yl)-2-phenylpyrimidine ligands: From discrete [2 × 2] grid structures to star-shaped supramolecular polymeric architectures

Hoogenboom, Richard,Jana, Somdeb,Jerca, Valentin Victor,Lenaerts, Ruben,Ryskulova, Kanykei,Seiffert, Anne K.,Van Hecke, Kristof,Xu, Xiaowen

, p. 8746 - 8751 (2021)

The self-assembly of bis-tridentate ligands leads to the spontaneous formation of [2 × 2] grid-like metal complexes. However, the synthesis of such ligands is rather cumbersome. In the work, we demonstrate a straightforward synthesis route to prepare bis-tridentate 4,6-bis((1H-1,2,3-triazol-4-yl)-pyridin-2-yl)-2-phenylpyrimidine ligands through double CuAAC click chemistry with 4,6-bis(6-ethynylpyridin-2-yl)-2-phenylpyrimidine as well as their self-assembly into [2 × 2] grid-like metal complexes. In addition, four macromolecular ligands were synthesized starting from azido-end-functionalized poly(2-ethyl-2-oxazoline) (PEtOx) or poly(ethylene glycol) (PEG). These macromolecular ligands were used in the construction of star-shaped supramolecular polymers through complexation with transition metal ions (e.g., Fe2+or Zn2+). The successful fabrication of complexes and star-shaped polymers was confirmed by UV-vis titration measurements and MALDI-TOF mass spectrometry. However, the chemical structure of the polymer was found to have a strong influence on the [2 × 2] grid formation, which was successful with the PEG-ligands but not with the PEtOx-ligands, while the molecular weight of the PEG did not interfere with grid formation.

Targeting G Protein-Coupled Receptors with Magnetic Carbon Nanotubes: The Case of the A3 Adenosine Receptor

Pineux, Florent,Federico, Stephanie,Klotz, Karl-Norbert,Kachler, Sonja,Michiels, Carine,Sturlese, Mattia,Prato, Maurizio,Spalluto, Giampiero,Moro, Stefano,Bonifazi, Davide

, p. 1909 - 1920 (2020/09/11)

The A3 adenosine receptor (AR) is a G protein-coupled receptor (GPCR) overexpressed in the membrane of specific cancer cells. Thus, the development of nanosystems targeting this receptor could be a strategy to both treat and diagnose cancer. Iron-filled carbon nanotubes (CNTs) are an optimal platform for theranostic purposes, and the use of a magnetic field can be exploited for cancer magnetic cell sorting and thermal therapy. In this work, we have conjugated an A3AR ligand on the surface of iron-filled CNTs with the aim of targeting cells overexpressing A3ARs. In particular, two conjugates bearing PEG linkers of different length were designed. A docking analysis of A3AR showed that neither CNT nor linker interferes with ligand binding to the receptor; this was confirmed by in vitro preliminary radioligand competition assays on A3AR. Encouraged by this result, magnetic cell sorting was applied to a mixture of cells overexpressing or not the A3AR in which our compound displayed indiscriminate binding to all cells. Despite this, it is the first time that a GPCR ligand has been anchored to a magnetic nanosystem, thus it opens the door to new applications for cancer treatment.

Optical detection of di- And triphosphate anions with mixed monolayer-protected gold nanoparticles containing zinc(II)-dipicolylamine complexes

Reinke, Lena,Bartl, Julia,Koch, Marcus,Kubik, Stefan

, p. 2687 - 2700 (2020/12/01)

Gold nanoparticles covered with a mixture of ligands of which one type contains solubilizing triethylene glycol residues and the other peripheral zinc(II)-dipicolylamine (DPA) complexes allowed the optical detection of hydrogenphosphate, diphosphate, and triphosphate anions in water/methanol 1:2 (v/v). These anions caused the bright red solutions of the nanoparticles to change their color because of nanoparticle aggregation followed by precipitation, whereas halides or oxoanions such as sulfate, nitrate, or carbonate produced no effect. The sensitivity of phosphate sensing depended on the nature of the anion, with diphosphate and triphosphate inducing visual changes at significantly lower concentrations than hydrogenphosphate. In addition, the sensing sensitivity was also affected by the ratio of the ligands on the nanoparticle surface, decreasing as the number of immobilized zinc(II)-dipicolylamine groups increased. A nanoparticle containing a 9:1 ratio of the solubilizing and the anion-binding ligand showed a color change at diphosphate and triphosphate concentrations as low as 10 μmol/L, for example, and precipitated at slightly higher concentrations. Hydrogenphosphate induced a nanoparticle precipitation only at a concentration of ca. 400 μmol/L, at which the precipitates formed in the presence of diphosphates and triphosphates redissolved. A nanoparticle containing fewer binding sites was more sensitive, while increasing the relative number of zinc(II)-dipicolylamine complexes beyond 25% had a negative impact on the limit of detection and the optical response. Transmission electron microscopy provided evidence that the changes of the nanoparticle properties observed in the presence of the phosphates were due to a nanoparticle crosslinking, consistent with the preferred binding mode of zinc(II)-dipicolylamine complexes with phosphate anions which involves binding of the anion between two metal centers. This work thus provided information on how the behavior of mixed monolayer-protected gold nanoparticles is affected by multivalent interactions, at the same time introducing a method to assess whether certain biologically relevant anions are present in an aqueous solution within a specific concentration range.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 74654-06-1