Welcome to LookChem.com Sign In|Join Free

CAS

  • or

7693-26-7

Post Buying Request

7693-26-7 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

7693-26-7 Usage

Chemical Properties

dispersion of tan powder in mineral oil

Uses

Different sources of media describe the Uses of 7693-26-7 differently. You can refer to the following data:
1. Organic condensations and alkylations.
2. It is used as a strong reducing agent and inmaking super bases RNHK and ROK(whereRis an alkyl group) (Sullivan andWade 1980).It is sold as 35 wt% dispersion in mineral oil.
3. Potassium Hydride is used in preparation of Hydroxy-Xanthone derivatives via Isoprenylation followed by Claisen rearrangement starting from Fluoroxanthone derivatives.

Definition

potassium hydride: A white orgreyish white crystalline solid, KH;r.d. 1.43–1.47. It is prepared by passinghydrogen over heated potassiumand marketed as a light grey powderdispersed in oil. The solid decomposeson heating and in contact withmoisture and is an excellent reducingagent. Potassium hydride is a firehazard because it produces hydrogenon reaction with water.

Reactions

Potassium hydride acts as a base and as hydride donor. It is used for deprotonation, cyclization-condensation, elimination, and rearrangement reactions, and also as a reducing agent. Potassium hydride undergoes reaction quickly and quantitatively with acids, and of particular note is its capability to rapidly deprotonate tertiary alcohols where sodium hydride or potassium metal do so slowly or not at all. The reactions of metal hydrides take place at the crystal surface. The crystal lattice energies decrease from lithium to cesium hydride, and potassium hydride appears to have the optimal lattice energy and hydride radius for surface reactions. The presence of 18-crown-6 enhances the reactivity of potassium hydride, The crown ether can operate as a phase-transfer agent or as a simple “pickling” agent of the potassium hydride surface, dissolving the formed inorganic salts. Potassium hydride is usually superior to lithium and sodium hydride in the reactions. Unusually active potassium hydride can be prepared easily from hydrogen and superbasic reagents (t-BuOK-TMEDA) in hexane. “Superactive potassium hydride” is very active in deprotonation as well as in reduction. The reactivity of commercially available potassium hydride, which is prepared by the reaction of hydrogen gas with elemental potassium, depends upon the impurities in different lots (mainly potassium or its reaction products), thus leading to side reactions and variable yields. The superactive metal hydride contains no alkali metal.

General Description

This product has been enhanced for energy efficiency.

Hazard

Dangerous fire and explosion risk, evolves toxic and flammable gases on heating and on expo- sure to moisture.

Health Hazard

Different sources of media describe the Health Hazard of 7693-26-7 differently. You can refer to the following data:
1. Potassium hydride react with the moisture on skin and other tissues to form highly corrosive sodium and potassium hydroxide. Contact of these hydrides with the skin, eyes, or mucous membranes causes severe burns; thermal burns may also occur due to ignition of the liberated hydrogen gas.
2. The toxicity data on potassium hydride arenot reported in the literature. In the pure state, this compound should be highly corrosiveby inhalation, ingestion, and skin contact.It yields potassium hydroxide, whichis also very corrosive, when reacted withmoisture.

Fire Hazard

Potassium hydride is flammable solid that ignite on contact with moist air. Potassium hydride presents a more serious fire hazard than sodium hydride. The mineral oil dispersions do not ignite spontaneously on exposure to the atmosphere. Sodium hydride and potassium hydride fires must be extinguished with a class D dry chemical extinguisher or by the use of sand, ground limestone, dry clay or graphite, or "Met-L-X ? " type solids. Water or CO 2 extinguishers must never be used on sodium and potassium hydride fires.

Flammability and Explosibility

Potassium hydride and sodium hydride are flammable solids that ignite on contact with moist air. Potassium hydride presents a more serious fire hazard than sodium hydride. The mineral oil dispersions do not ignite spontaneously on exposure to the atmosphere. Sodium hydride and potassium hydride fires must be extinguished with a class D dry chemical extinguisher or by the use of sand, ground limestone, dry clay or graphite, or "Met-L-X?" type solids. Water or CO2 extinguishers must never be used on sodium and potassium hydride fires.

Safety Profile

Dangerous fire hazard by chemical reaction. Ignites spontaneously in air. Moderate explosion hazard when exposed to heat or by chemical reaction. Wdl react with water, steam, or acids to produce H2 which then igmtes. Can react vigorously with oxidizing materials. To fight fire, use CO2, dry chemical. Potentially explosive reactions with 0-2,4- dnitrophenylhydroxylamine, fluoroalkenes. Ignites on contact with air, oxygen + moisture, fluorine. Incompatible with Cl2, acetic acid, acrolein, acrylonitrile, (CaC + Cl2), ClO2, (H202 + Cl2), (CHFL + CH,OH), 1,2-dchloroethylene, maleic anhydride, (n-methyl-n-nitrosourea + CH2Cl2), nitroethane, NCb, nitromethane, nitroparaffins, o-nitrophenol, nitropropane, n-nitrosomethylurea, (nitrosomethylurea + CH2Cl2), H20, trichloroethylene, tetrahydrofuran, tetrachlorethane. When heated to decomposition it emits highly toxic fumes of K2O. See also POTASSIUM and HYDRIDES.

storage

Safety glasses, impermeable gloves, and a fire-retardant laboratory coat should be worn at all times when working with these substances. These hydrides should be used only in areas free of ignition sources and should be stored preferably as mineral oil dispersions under an inert gas such as argon.

Incompatibilities

Potassium hydride and sodium hydride react violently with water, liberating hydrogen, which can ignite. Oil dispersions of these hydrides are much safer to handle because the mineral oil serves as a barrier to moisture and air. Potassium hydride may react violently with oxygen, CO, dimethyl sulfoxide, alcohols, and acids. Explosions can result from contact of these compounds with strong oxidizers. Potassium hydride is generally more reactive than sodium hydride.

Waste Disposal

Excess potassium or sodium hydride and waste material containing these substances should be placed in an appropriate container under an inert atmosphere, clearly labeled, and handled according to your institution's waste disposal guidelines. Experienced personnel can destroy small quantities of sodium hydride and potassium hydride by the careful dropwise addition of t-butanol or iso-propanol to a suspension of the metal hydride in an inert solvent such as toluene under an inert atmosphere such as argon. Great care must be taken in the destruction of potassium hydride because of its greater reactivity. The resulting mixture of metal alkoxide should be placed in an appropriate container, clearly labeled, and handled according to your institution's waste disposal guidelines.

Check Digit Verification of cas no

The CAS Registry Mumber 7693-26-7 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 7,6,9 and 3 respectively; the second part has 2 digits, 2 and 6 respectively.
Calculate Digit Verification of CAS Registry Number 7693-26:
(6*7)+(5*6)+(4*9)+(3*3)+(2*2)+(1*6)=127
127 % 10 = 7
So 7693-26-7 is a valid CAS Registry Number.
InChI:InChI=1/K.H/q+1;-1

7693-26-7 Well-known Company Product Price

  • Brand
  • (Code)Product description
  • CAS number
  • Packaging
  • Price
  • Detail
  • Alfa Aesar

  • (L13266)  Potassium hydride, 30% w/w in mineral oil   

  • 7693-26-7

  • 25g

  • 1026.0CNY

  • Detail
  • Alfa Aesar

  • (L13266)  Potassium hydride, 30% w/w in mineral oil   

  • 7693-26-7

  • 100g

  • 2226.0CNY

  • Detail
  • Aldrich

  • (215813)  Potassiumhydride  30 wt % dispersion in mineral oil

  • 7693-26-7

  • 215813-75G

  • 1,813.50CNY

  • Detail
  • Aldrich

  • (215813)  Potassiumhydride  30 wt % dispersion in mineral oil

  • 7693-26-7

  • 215813-300G

  • 6,493.50CNY

  • Detail
  • Aldrich

  • (708860)  Potassiumhydride  in paraffin

  • 7693-26-7

  • 708860-5G

  • 589.68CNY

  • Detail
  • Aldrich

  • (708860)  Potassiumhydride  in paraffin

  • 7693-26-7

  • 708860-25G

  • 1,639.17CNY

  • Detail

7693-26-7SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 17, 2017

Revision Date: Aug 17, 2017

1.Identification

1.1 GHS Product identifier

Product name Potassium hydride

1.2 Other means of identification

Product number -
Other names HK

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:7693-26-7 SDS

7693-26-7Synthetic route

hydrogen
1333-74-0

hydrogen

potassium
7440-09-7

potassium

potassium hydride
7693-26-7

potassium hydride

Conditions
ConditionsYield
In neat (no solvent) byproducts: H; Irradiation (UV/VIS); mixt. irradiation by frequency doubled and tripled Nd:YAG laser (404.4nm, 30 Hz, 300 μJ/pulse, oven temp. 500 K), according to P. D. Kleib er et al., J. Chem. Phys. 85 (1986) 5493; detection by LIF technique;
In neat (no solvent) using a six-armed heat pipe to deposit K metal, heating K metal in the oven (500 K, 100 mTorr), evacuating (to 1E-5 Torr prior introduction of H2) flowing H2 slowly through the chamber (< 5 Torr);
In neat (no solvent, gas phase) potassium was placed in the cell-furnace and subjected to vacuum extn. and slight heating; hydrogen was introduced at 10-20 torr; the cell was kept at 700 K;;
In neat (no solvent) production of hydride on discharge (2400 MHz, 150 mA, p(H2) = 1 Torr);
potassium hydride
7693-26-7

potassium hydride

lithium tetrahydridogallate

lithium tetrahydridogallate

potassium tetrahydrogallate

potassium tetrahydrogallate

Conditions
ConditionsYield
In diethyl ether byproducts: LiH; Ga-complex soln. treating with excess K-compd. (three-necked flask, roomtemp., stirring, 3 h), soln. decantation; ppt. washing (ether), treatment with diglyme, crystn. on soln. vac. evapn. (80°C), crystals washing (ether), vac. drying (90°C, 2 h); elem. anal.;91%
potassium hydride
7693-26-7

potassium hydride

(C6H5)2Sn(CH2C(OH)(CF3)2)2
210818-37-4

(C6H5)2Sn(CH2C(OH)(CF3)2)2

(C6H5)2Sn(OC(CF3)2)2(CH2)(CH3)(1-)*K(1+)=(C6H5)2Sn(OC(CF3)2)2(CH2)(CH3)K

(C6H5)2Sn(OC(CF3)2)2(CH2)(CH3)(1-)*K(1+)=(C6H5)2Sn(OC(CF3)2)2(CH2)(CH3)K

Conditions
ConditionsYield
In tetrahydrofuran room temp., 2 d;

7693-26-7Downstream Products

7693-26-7Relevant articles and documents

Rotational population distribution of KH (v=0, 1, 2, and 3) in the reaction of K(52PJ, 6 2PJ, and 72PJ) with H2: Reaction mechanism and product energy disposal

Liu, Dean-Kuo,Lin, King-Chuen

, p. 9121 - 9129 (1996)

Using a pump-probe method, we have systematically studied the rotational distribution of KH (v=0-3) produced in the reaction of K (5P, 6P, and 7P) with H2. The resulting rotational states fit roughly a statistical distribution at the system temperature, while the vibrational populations are characterized by a Boltzmann vibrational temperature of 1800, 3000, and 3100 K for the 5p, 6P, and 7P states, respectively. These results provide evidence that the reaction follows a collinear collisional geometry. This work has successfully probed KH from the K(5P) reaction, and confirms that a nonadiabatical transition via formation of an ion-pair K+H2- intermediate should account for the reaction pathway. The available energy dissipation was measured to be (68±4)%, (26±2)%, and (6±3)% into the translation, vibration, and rotation of the KH product, respectively. The energy conversion into vibrational degree of freedom generally increases with the principal quantum number, indicating that the electron-jump distance elongates along the order of 5P2 case, in which the electron-jump distances were considered roughly the same. Furthermore, a relatively large distance is expected to account for highly vibrational excitation found in the KH product. According to the classical trajectory computation reported by Polanyi and co-workers, the strong instability of the H2- bond, inducing a large repulsion energy, appears to favor energy partitioning into the translation.

The intensity behaviour of the laser-induced fluorescence spectrum in the KH molecule

Pardo, A.,Poyato, J. M. L.,Camacho, J. J.

, p. 679 - 682 (1987)

Collosional processes involving changes in rotational and vibrational quantum numbers are detected in laser induced fluorescence spectrum of KH molecule.The knowledge of the Franck-Condon factors in the involved transitions allows us to evaluate a relative variation of R2e versus the ν'' vibrational quantum number.In the same context a population analysis was made for the ν'=7 vibrational level.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 7693-26-7