Welcome to LookChem.com Sign In|Join Free

CAS

  • or
Pyrethrins, also known as Pyrethrum, are natural insecticides produced by certain Chrysanthemum species of plants. They are a combination of six pyrethrin isomers, namely, pyrethrin 1, pyrethrin 2, cinerin 1, cinerin 2, jasmolin 1, and jasmolin 2. Pyrethrins are brown, viscous oil or solid, insoluble in water, and soluble in other common solvents. They are subject to photodegradation and oxidize rapidly in the presence of air.

8003-34-7

Post Buying Request

8003-34-7 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

8003-34-7 Usage

Uses

Used in Household Insecticides:
Pyrethrins are used as household insecticides for controlling a wide range of flying and crawling insects, such as flies, mosquitoes, and garden insects.
Used in Public Health and Animal Houses:
Pyrethrins are used to control insects and mites in public health, stored products, animal houses, and on domestic and farm animals.
Used in Glasshouse Crops:
Pyrethrins are used on glasshouse crops, although they have relatively limited use on field crops, vegetables, and fruit.
Used in Agricultural, Commercial, Residential, and Public Health Areas:
Pyrethrins are used to kill a number of different flying and crawling insects and arthropods in various locations, including residential, public, and commercial buildings, animal houses, warehouses, fields, and greenhouses.
Used in Veterinary Medicine:
Pyrethrins are extensively used in the field of veterinary medicine for controlling pests on pets and livestock.
Used with Synergists:
Pyrethrins are often used with synergists such as piperonyl butoxide, which inhibits metabolic detoxification and enhances the insecticidal activity of pyrethrins.
Used in Non-Persistent Insect Control:
Due to their rapid degradation in the environment, pyrethrins are an excellent choice for controlling agricultural pests, insects on pets, and livestock, with little known cases of insect resistance.
Used in Indoor and Outdoor Applications:
Pyrethrins have been approved for a wide range of indoor and outdoor uses, including homes, restaurants, broad-scale spraying operations, and organic farms.

Indications

Pyrethrins, rapid-acting compounds, derived from chrysanthemum plants, are the leading over-the-counter louse remedy. These compounds interfere with neural transmission, leading to paralysis and death. Piperonyl butoxide (PBO) potentiates the pyrethrins by inhibiting the hydrolytic enzymes responsible for pyrethrin metabolism in arthropods.

Air & Water Reactions

Oxidize relatively rapidly in air. Water emulsifiable.

Reactivity Profile

PYRETHRINS decompose rapidly in base; may generate heat with caustic solutions. May also react with acids to liberate heat. Generate flammable hydrogen with alkali metals and hydrides.

Hazard

Toxic by ingestion and inhalation.

Health Hazard

Pyrethrum dust causes dermatitis and occasionally sensitization.The primary effect in humans from exposure to pyrethrum is dermatitis. The usual lesion is a mild erythematous dermatitis with vesicles, papules in moist areas, and intense pruritis; a bullous dermatitis may develop. Some persons exhibit sensitivity similar to pollinosis, with sneezing, nasal discharge, and nasal stuffiness.2 A few cases of asthma due to pyrethrum mixtures have been reported; some of the people involved had a previous history of asthma with allergy to a wide spectrum of substances.

Fire Hazard

Some may burn but none ignite readily. Containers may explode when heated. Some may be transported hot.

Pharmacology

The chrysanthemates (pyrethrin I, cinerin I, and jasmolin I) are generally more potent for insecticidal kill, whereas the pyrethrates (pyrethin II, cinerin II, and jasmolin II) cause more rapid knockdown. When combined with synergists, the pyrethrins are effective at low doses in causing knockdown and kill of a wide variety of pests. Pyrethrins exert their effects primarily by acting on sodium channels in nerves to disturb nerve conductance . Two distinct effects, referred to as type I and type II, have been defined for pyrethrins.

Clinical Use

Because of the high cost and rapid degradation of the pyrethrins, they usually are combined with piperonyI butoxide, a synergist. PiperonyI butoxide has no insecticidal activity in it own right but is thought to inhibit the cytochrome P450 enzyme of the insect, thus preventing an oxidative inactivation of the pyrethrins by the parasite. The combination is used in a 10:1 ratio of . piperonyl butoxide to pyrethrins. The mixture is used for treatment of Pedicul us humanus capitis, Pediculus humanus corporis, and Phthir'us pubis. Various dosage forms are available, including a gel, shampoo, and topical solution.

Potential Exposure

Pyrethrins are used as an ingredient of various contact insecticides. Those engaged in the isolation, formulation, or application of these materials.

Environmental Fate

If released to air, the relatively low vapor pressure indicates that the pyrethrins and pyrethroids will exist in both the vapor and particulate phases in the atmosphere. Vapor-phase compounds are rapidly degraded by direct photolysis and by reaction with photochemically produced hydroxyl radicals and ozone; the half-lives for these reactions in air are estimated to be 1.3 h and 17 min, respectively. Particulates may travel long distances and are removed from the atmosphere by wet or dry deposition (HSDB, 2013; ATSDR, 2003). Pyrethrins and pyrethroids are strongly adsorbed to the soil surfaces so they are not expected to be mobile. The compounds also strongly adsorb to suspended solids and sediment in the water column. Thus, partitioning to solids attenuates volatilization from soil and water surfaces. Pyrethrins and pyrethroids are often used indoors in sprays or aerosol bombs, and the volatilization rates from glass or floor surfaces may be significantly faster than from soils since these compounds are not likely to adsorb as strongly to these surfaces (ATSDR, 2003). These insecticides are readily biodegraded by microorganisms. Pyrethrins and pyrethroids bioconcentrate in aquatic organisms, including fish, oysters, and insects. The bioconcentration factor for several commercial products in three species of fish ranged from 180 to 1200 depending on the amount of dissolved organic matter in the water column (ATSDR, 2003).

Metabolic pathway

Each year about 200,000 kg of pyrethrins are used as a crop insecticide, much of it in enclosed conditions, and in public and animal health. Its effectiveness outdoors is limited by the high photo-instability of its components. This factor, and the great complexity of the mixture, has limited studies on its metabolic fate. The environmental fate of pyrethrum has been the subject of an excellent review by Crosby (1995). He points out that, in spite of its still quite wide use, the environmental fate of its components is largely unknown. The review deals with transport processes (partitioning, volatilisation, adsorption, etc.), photochemical and chemical degradation and environmental biotransformation (soil and water) as predicted from the limited amount of data on the pure components and that obtained for the closely related synthetic analogues, e.g. the allethrins, phenothrin and the resmethrins. This is a valuable paper by one of the foremost scientists in the field. The fates of the chrysanthemic acid moiety and of the synthetic alcohol moieties of similar structure to those in the natural pyrethrins (e.g. allethrolone) are considered to be useful models for the fate of pyrethrin. The pyrethrin I series (chrysanthemate esters) appears to have higher partition coefficients, bioconcentration factors, volatility and soil adsorption, but lower aqueous solubility than does the pyrethrin II series (pyrethrate esters). This suggests that pyrethrin I (PI), cinerin I (CI) and jasmolin I (JI) may be more readily transported in the environment. Photodegradation and biotransformation should be very rapid for both series. The limited experimental evidence given below supports these predictions. The best mformation is available for animals and most of the infomation given below is derived from in vitro studies using rodent liver microsomes. The constituents of pyrethrum appear to differ from the synthetic pyrethroids in being relatively resistant to metabolic hydrolysis. Metabolism is mainly via hydroxylation and elimination after conjugation.

Degradation

Pyrethrum is stable for years in the dark at ambient temperature. In light, rapid photo-oxidation occurs with a DT50 in sunlight of ﹤15 minutes. Hydrolysis to the component acids and alcohols occurs under basic conditions. Exposure to sunlight (Ruzo, 1982) affords a complex mixture of products which is insecticidally inactive. Reactions include isomerisation, hydrolysis and oxidation. Products derived from the photomodification of the chrysanthemic acid moiety of pyrethrin I (PI) (Chen and Casida, 1969) include the analogues of those described under phenothrin. Simultaneous reactions at the alcohol moieties lead to very complex mixtures of products.

Toxicity evaluation

The pyrethrins have low toxicity to mammals, and death after exposure to pyrethrins is rare. Their lability in light and air leads to a lack of residual activity and the need for repeated applications. This has restricted the use of the natural pyrethrins in the animal health sector.

Incompatibilities

Incompatible with oxidizers (chlorates, nitrates, peroxides, permanganates, perchlorates, chlorine, bromine, fluorine, etc.); contact may cause fires or explo- sions. Keep away from alkaline materials, strong bases, strong acids, oxoacids, epoxides. Compounds of the car- boxyl group react with all bases, both inorganic and organic (i.e., amines) releasing substantial heat, water and a salt that may be harmful. Incompatible with arsenic com- pounds (releases hydrogen cyanide gas), diazo compounds, dithiocarbamates, isocyanates, mercaptans, nitrides, and sulfides (releasing heat, toxic and possibly flammable gases), thiosulfates and dithionites (releasing hydrogen sul- fate and oxides of sulfur).

Check Digit Verification of cas no

The CAS Registry Mumber 8003-34-7 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 8,0,0 and 3 respectively; the second part has 2 digits, 3 and 4 respectively.
Calculate Digit Verification of CAS Registry Number 8003-34:
(6*8)+(5*0)+(4*0)+(3*3)+(2*3)+(1*4)=67
67 % 10 = 7
So 8003-34-7 is a valid CAS Registry Number.
InChI:InChI=1/C21H28O3/c1-7-8-9-10-15-12-17(14(4)19(15)22)24-20(23)18-16(11-13(2)3)21(18,5)6/h7-9,11-12,14,16-18H,1,10H2,2-6H3

8003-34-7SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 17, 2017

Revision Date: Aug 17, 2017

1.Identification

1.1 GHS Product identifier

Product name PYRETHRINS

1.2 Other means of identification

Product number -
Other names 3-(2-propenyl)-2-methyl-4-oxo-2-cyclopentenyl 2,2-dimethyl-3-(2-methyl-1-propenyl)cyclopropanecarboxylate

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only. Insecticide
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:8003-34-7 SDS

8003-34-7Relevant articles and documents

Process for producing cyclopropanecarboxylates

-

, (2008/06/13)

There is disclosed a process process for producing a cyclopropanecarboxylate of formula (1): 1which process comprises reacting cyclopropanecarboxylic acid of formula (2): 2with a monohydroxy compound of formula (3): R6OH??(3),in the presence of a catalyst compound comprising an element of to Group 4 of the Periodic Table of Elements.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 8003-34-7