10.1002/chem.201805631
Chemistry - A European Journal
FULL PAPER
J. Am. Chem. Soc. 2006, 128, 16042–16043; c) V. Bhat, S. Wang, B. M.
Stolz, S. C. Virgil, .J. Am. Chem. Soc. 2013, 135, 16829–16832; d) D.-
W. Gao, Q. Gu, S.-L. You, ACS Catal. 2014, 4, 2741–2745.
[21] a) B. R. Beno, K.-S. Yeung, M. D. Bartberger, L. D. Pennington, N. A.
Meanwell, J. Med. Chem. 2015, 58, 4383–4438; b) V. B. Birman, X. Li,
Z. Han, Org. Lett. 2007, 9, 37–40; c) M. E. Abbasov, B. M. Hudson, D.
J. Tantillo, D. Romo, J. Am. Chem. Soc. 2014, 136, 4492–4495; d) E. R.
T. Robinson, D. M. Walden, C. Fallan, M. D. Greenhalgh, P. H.-Y.
Cheong, A. D. Smith, Chem. Sci. 2016, 7, 6919–6927; e) T. H. West, D.
M. Walden, J. E. Taylor, A. C. Brueckner, R. C. Johnson, P. H.-Y.
Cheong, G. C. Lloyd-Jones, A. D. Smith, J. Am. Chem. Soc. 2017, 139,
4366–4375; f) D. J. Pascoe, K. B. Ling, S. L. Cockroft, J. Am. Chem.
Soc. 2017, 139, 15160–15167.
[10] a) S. Arseniyadis, M. Mahesh, P. McDaid, T. Hampel, S. G. Davey, A.
C. Spivey, Collect. Czech. Chem. Commun. 2011, 76, 1239–1253; b) S.
Shirakawa, X. Wu, K. Mauroka, Angew. Chem. Int. Ed. 2013, 52,
14200–14203; Angew. Chem. 2013, 125, 14450–14453; c) D. J. Cheng,
L. Yan, S. K. Tian, M. Y. Wu, L. X. Wang, Z. L. Fan, S. C. Zheng, X. Y.
Liu, B. Tan, Angew. Chem. Int. Ed. 2014, 53, 3684–3687; Angew.
Chem. 2014, 126, 3758–3761.
[11] For reviews on Lewis base-catalyzed acyl transfer see: a) C. E. Müller,
P. R. Schreiner, Angew. Chem. Int. Ed. 2011, 50, 6012–6042; Angew.
Chem. 2011, 123, 6136–6167; b) J. I. Murray, Z. Heckenast, A. C.
Spivey in Lewis Base Catalysis in Organic Synthesis, Vol. 2 (Eds.: E.
Vedejs, S. E. Denmark), Wiley-VCH, Weinheim, 2016, pp. 459–526.
[12] Selectivity factor (s) is the most commonly-used metric to report the
efficiency of a KR, and is defined as the rate constant for the fast
reacting enantiomer divided by the rate constant for the slow reacting
enantiomer (s = kfast/kslow). See references 6a and 6b for more details.
[13] a) G. Ma, J. Deng, M. P. Sibi, Angew. Chem. Int. Ed. 2014, 53, 11818–
11821; Angew. Chem. 2014, 126, 12012–12015; For a related example
of DKR, see: G. Ma, C. Deng, J. Deng, M. P. Sibi, Org. Biomol. Chem.
2018, 16, 3121-3126
[22] a) S. Xu, I. Held, B. Kempf, H. Mayr, W. Steglich, H. Zipse, Chem. Eur.
J. 2005, 11, 4751–4757; b) V. Lutz, J. Glatthaar, C. Würtele, M. Serafin,
H. Hausmann, P. R. Schreiner, Chem. Eur. J. 2009, 15, 8548–8557; c)
E. Larionov, M. Mahesh, A. C. Spivey, Y. Wei, H. Zipse, J. Am. Chem.
Soc. 2012, 134, 9390–9399; d) C. E. Cannizzaro, K. N. Houk, J. Am.
Chem. Soc. 2002, 124, 7163–7169; e) R. C. Johnston, P. H.-Y. Cheong,
Org. Biomol. Chem. 2013, 11, 5057–5064.
[23] C. Joannesse, C. P. Johnston, C. Concellón, C. Simal, D. Philp, A. D.
Smith, Angew. Chem. Int. Ed. 2009, 48, 8914–8918; Angew. Chem.
2009, 121, 9076–9080.
[24] See the Supporting Information for details.
[25] a) H. E. Eastman, C. Jamieson, A. J. B. Watson, Aldrichimica Acta
2015, 48, 51–55; b) D. Prat, A. Wells, J. Hayler, H. Sneddon, C. R.
McElroy, S. Abou-Shehada, P. J. Dunn, Green Chem. 2016, 18, 288–
296.
[14] S. Lu, S. B. Poh, Y. Zhao, Angew. Chem. Int. Ed. 2014, 53, 11041–
11045; Angew. Chem. 2014, 126, 11221–11225
[15] For a review on isothiourea catalysis see: J. Merad, J.-M. Pons, O.
Chuzel, C. Bressy, Eur. J. Org. Chem. 2016, 5589–5610.
[26] C. A. Hunter, Angew. Chem. Int. Ed. 2004, 43, 5310–5324; Angew.
Chem. 2004, 116, 5424–5439.
[16] a) V. B. Birman, X. Li, Org. Lett. 2006, 8, 1351–1354; b) M. Kobayashi,
S. Okamoto, Tetrahedron Lett. 2006, 47, 4347–4350.
[27] I. Shinna, R. Ibuka, M. Kubota, Chem. Lett. 2002, 31, 286–287.
[28] The origins behind how a mixed anhydride improves the selectivity of
the KR are currently unknown. Possible explanations could include
changes in the rate of alternative, less selective reaction pathways with
each anhydride; or could originate from the nature of the counterion in
the diastereomeric acylation TSs (see Scheme 2). The carboxylate
counterion is known to play a significant role in stabilising the acylation
TSs (see references 19a, 20, 22), and thus different carboxylate
counterions could in principle stabilise each diastereomeric TS to
different extents, leading to a change in the magnitude of KR selectivity.
To the best of our knowledge however there are currently no systematic
studies into the magnitude or origin of this effect.
[17] A. S. Burns, A. J. Wagner, J. L. Fulton, K. Young, A. Zakarin, S. D.
Rychnovsky, Org. Lett. 2017, 19, 2953–2956.
[18] a) V. B. Birman, L .Guo, Org. Lett. 2006, 8, 4859–4861; b) I. Shiina, K.
Nakata, Tetrahedron Lett. 2007, 48, 8314–8317; c) V. B. Birman, X. Li,
Org. Lett. 2008, 10, 1115–1118; d) I. Shiina, K. Nakata, M. Sugimoto,
Y. Onda, T. Ikzumi, K. Ono, Heterocycles 2009, 77, 801–810; e) Y.
Zhang, V B. Birman, Adv. Synth. Catal. 2009, 351, 2525–2529; f) Q. Hu,
H. Zhou, X. Geng, P. Chen, Tetrahedron 2009, 65, 2232–2238; g) H.
Zhou, Q. Hu, P. Chen, Tetrahedron 2010, 66, 6494–6499; h) I. Shiina,
K. Nakata, K. Ono, M. Sugimoto, A. Sekiguchi, Chem. Eur. J. 2010, 16,
167–172; i) K. Nakata, A. Sekiguchi, I. Shiina, Tetrahedron: Asymmetry
2011, 22, 1610–1619; j) I. Shiina, K. Ono, K. Nakata, Chem. Lett. 2011,
40, 147–149; k) D. Belmessieri, C. Joannesse, P. A. Woods, C.
MacGregor, C. Jones, C. D. Campbell, C. P. Johnson, N. Duguet, C.
Concellón, R. A. Bragg, A. D. Smith, Org. Biomol. Chem. 2011, 9, 559–
570; l) X. Li, H. Jiang, E. W. Uffman, L. Guo, Y. Zhang, X. Yang, V. B.
Birman, J. Org. Chem. 2012, 77, 1722–1737; m) K. Nakata, K. Gotoh,
K. Ono, K. Futami, I. Shiina, Org. Lett. 2013, 15, 1170–1173; n) I.
Shiina, K. Ono, T. Nakahara, Chem. Commun. 2013, 49, 10700; o) S. F.
Musolino, O. S. Ojo, N. J. Westwood, J. E. Taylor, A. D. Smith, Chem.
Eur. J. 2016, 22, 18916–18922; p) K. Nakata, E. Tokumaru, T. Saitoh,
T. Nakahara, K. Ono, T. Murata, I. Shina, Heterocycles 2017, 95, 277–
289; q) T. Murata, T. Kawanishi, A. Sekiguchi, R. Ishikawa, K. Ono, K.
Nakata, I. Shina, Molecules 2018, 23, 2003; r) R. M. Neyyappadath, R.
Chisholm, M. D. Greenhalgh, C. Rodríguez-Escrich, M. A. Pericàs, G.
Hähner, A. D. Smith, ACS Catal. 2018, 8, 1067–1075.
[29] The KR of a 3,3′-dibrominated H8-BINOL derivative was also attempted,
however no conversion was obtained, consistent with the previous
observation that substituents in the 3,3′ positions inhibit effective
acylation.
[29] a) T. Rodima, I. Kaljurand, A. Pihl, V. Mäemets, I. Leito, I. A. Koppel, J.
Org. Chem. 2002, 67, 1873–1881; b) I. Kaljurand, A. Kütt, L. Sooväli, T.
Rodima, V. Mäemets, I. Leito, I. A. Koppel, J. Org. Chem. 2005, 70,
1019–1028.
[30] The research data underpinning this publication can be found at DOI:
[19] a) M. D. Greenhalgh, S. M. Smith, D. M. Walden, J. E. Taylor, Z. Brice,
E. R. T. Robinson, C. Fallan, D. B. Cordes, A. M. Z. Slawin, H. C.
Richardson, M. A. Grove, P. H.-Y. Cheong, A. D. Smith, Angew. Chem.
Int. Ed. 2018, 57, 3200–3206; Angew. Chem. 2018, 130, 3254–3260; b)
N. R. Guha, R. M. Neyyappadath, M. D. Greenhalgh, R. Chisholm, S. M.
Smith, M. L. McEvoy, C. M. Young, C. Rodríguez-Escrich, M. A.
Pericàs, G. Hähner, A. D. Smith, Green Chem. 2018, 20, 4537–4546.
[20] For related computational studies see: a) X. Li, P. Liu, K. N. Houk, J.
Am. Chem. Soc. 2008, 130, 13836–13837; b) I. Shiina, K. Nakata, K.
Ono, Y. Onda, M. Itagaki, J. Am. Chem. Soc. 2010, 132, 11629–11641;
c) P. Liu, X. Yang, V. B. Birman, K. N. Houk, Org. Lett. 2012, 14, 3288–
3291; d) X. Yang, P. Liu, K. N. Houk, V. B. Birman, Angew. Chem. Int.
Ed. 2012, 51, 9638; Angew. Chem. 2012, 124, 9776–9642.
This article is protected by copyright. All rights reserved.