Organometallics 2004, 23, 4531-4533
4531
Ru (xa n tsil)(CO)(P Cy3): F a cile Gen er a tion of a
Coor d in a tively Un sa tu r a ted Ru th en iu m (II) Com p lex
Bea r in g 14 Va len ce Electr on s [xa n tsil )
(9,9-d im eth ylxa n th en e-4,5-d iyl)bis(d im eth ylsilyl)]
Masaaki Okazaki,*,† Nobukazu Yamahira, J im J osephus Gabrillo Minglana, and
Hiromi Tobita*
Department of Chemistry, Graduate School of Science, Tohoku University,
Sendai 980-8578, J apan
Received August 11, 2004
Summary: Treatment of Ru(xantsil)(CO)(η6-toluene) (1)
[xantsil ) (9,9-dimethylxanthene-4,5-diyl)bis(dimethyl-
silyl)] with PCy3 led to the formation of Ru(xantsil)(CO)-
(PCy3) (3), in which the xantsil ligand is bound to the
ruthenium center in κ3(Si,Si,O) fashion. The highly
coordinatively unsaturated nature of 3 is indicated by
the reaction with CO to give Ru(xantsil)(CO)3(PCy3) (5).
Coordinatively unsaturated organotransition metal
complexes are known to be key intermediates in metal
complex-mediated homogeneous catalytic reactions. The
preparation and isolation of these species as a stable
form requires the use of ligands with steric and/or
electronic properties capable of stabilizing the com-
plexes.1 It was shown by Heyn et al. that strongly
σ-donating groups such as silyl and hydrido ligands can
be effective in stabilizing coordinatively unsaturated
F igu r e 1. Molecular structure of 2 with thermal ellipsoids
at the 50% probability level. Selected interatomic distances
(Å) and angles (deg): Ru-C1 1.865(3), Ru-P1 2.4006(9),
Ru-P2 2.4004(8), Ru-P3 2.3930(8), Ru-Si1 2.5235(8),
Ru-Si2 2.5277(8), C2‚‚‚C25 3.250(5), C4‚‚‚C28 3.298(5),
Si1-Ru-Si2 91.02(3), C1-Ru-P1 174.89(9), P2-Ru-Si1
173.54(3), P3-Ru-Si2 173.75(3).
complexes.2 Recently, our group has developed a new
type of bis(silyl) chelating ligand, (9,9-dimethylxan-
thene-4,5-diyl)bis(dimethylsilyl), or “xantsil”, which
can be coordinated to transition metals in κ2(Si,Si) or
κ3(Si,Si,O) fashion.3 The complexation of two electron-
releasing silyl groups and an ether oxygen atom in the
xanthene core is expected to stabilize the coordinatively
unsaturated species generated in the catalytic cycle.
This communication reports on the reactions of Ru-
(xantsil)(CO)(η6-toluene) (1) with tertiary phosphines
PR3 to give Ru(xantsil)(CO)(PR3)n [R ) Me (n ) 3), Cy
(n ) 1)]. The highly coordinatively unsaturated nature
of the latter is indicated by the reaction of Ru(xantsil)-
(CO)(PR3) with 2 equiv of CO to give Ru(xantsil)(CO)3-
(PR3), the structure of which was determined by X-ray
diffraction study.
The η6-toluene ligand in 1 was easily substituted by
three PMe3 molecules in dichloromethane at room
temperature to give Ru(xantsil)(CO)(PMe3)3 (2) in 84%
yield (eq 1). The molecular structure of 2 was deter-
mined by X-ray diffraction study (Figure 1). Complex 2
takes a slightly distorted octahedral geometry in which
three incoming PMe3 ligands occupy the fac-position.
The xanthene core is bent and the dihedral angle
between the least-squares planes of two aromatic rings
becomes 38.47(13)°. The ruthenium-silicon bonds Ru-
Si1 (2.5235(8) Å) and Ru-Si2 (2.5277(8) Å) are unusu-
ally long, a structural feature that was also observed
in Ru(xantsil)(CO)4 (av 2.565 Å)3a and which can be
explained similarly by the steric requirement of the
xantsil ligand. That is, the rigid xanthene core forces
two methyl groups (C3 and C5) to be within an ex-
tremely short interatomic distance (3.224(6) Å) com-
pared to the sum of the van der Waals radii of the two
methyl groups (4.0 Å). The steric repulsion causes the
other methyl groups (C2 and C4) on the silicon atoms
to move closer to the methyl groups on the P2 and P3
* To whom correspondence should be addressed. E-mail: mokazaki@
scl.kyoto-u.ac.jp (M.O.); tobita@mail.tains.tohoku.ac.jp (H.T.).
† Present address: International Research Center for Elements
Science, Institute for Chemical Research, Kyoto University, Uji, Kyoto
611-0011, J apan.
(1) Coordinatively unsaturated complexes: (a) Campion, B. K.;
Heyn, R. H.; Tilley, T. D. J . Chem. Soc., Chem. Commun. 1988, 278.
(b) Ogasawara, M.; Macgregor, S. A.; Streib, W. E.; Folting, K.;
Eisenstein, O.; Caulton, K. G. J . Am. Chem. Soc. 1996, 118, 10189. (c)
Gemel, C.; Mereiter, K.; Schmid, R.; Kirchner, K. Organometallics
1997, 16, 5601. (d) Tenorio, M. J .; Mereiter, K.; Puerta, M. C.; Valerga,
P. J . Am. Chem. Soc. 2000, 122, 11230. (e) Yamaguchi, Y.; Nagashima,
H. Organometallics 2000, 19, 725.
(2) Heyn, R. H.; Macgregor, S. A.; Nadasdi, T. T.; Ogasawara, M.;
Eisenstein, O.; Caulton, K. G. Inorg. Chim. Acta 1997, 259, 5.
(3) (a) Tobita, H.; Hasegawa, K.; Minglana, J . J . G.; Luh, L.-S.;
Okazaki, M.; Ogino, H. Organometallics 1999, 18, 2058. (b) Minglana,
J . J . G.; Okazaki, M.; Tobita, H.; Ogino, H. Chem. Lett. 2002, 406. (c)
Okazaki, M.; Minglana, J . J . G.; Yamahira, N.; Tobita, H.; Ogino, H.
Can. J . Chem. 2003, 81, 1350.
10.1021/om049379e CCC: $27.50 © 2004 American Chemical Society
Publication on Web 09/02/2004