J. Einsiedel et al. / Bioorg. Med. Chem. Lett. 18 (2008) 2013–2018
2017
major requirements that we suggest to be essential for
NTR1 recognition and activation. Two positive charges
attached to the Ca in position 9 within distances of 3–6
Acknowledgments
The authors thank A. Pinsker, S. Hemmers, I. Torres-
Berger and M. Kettler for skillful technical assistance
and Dr. H. Bittermann for helpful discussions. This
work was supported by the Deutsche Forschungsgeme-
inschaft (DFG Gm 13/7).
˚
and 5 A, respectively, are suggested to be required since
substitution of Arg8 by betaine (2a) retained ligand
affinity whereas the introduction of a negatively charged
carboxylate (2b, 2c) had an adverse effect on ligand
binding. The N-terminal portion is connected by a var-
iable linker to the functional unit of Pro10 and Tyr11
since the introduction of b-homo-Arg (1a), D-Arg or a
peptoid (4a) had no effect on ligand binding. Obviously,
the linker between the cationic centre and the backbone
is not fully extended at the native receptor-ligand com-
plex. Proline works as a unique ‘kink generating ele-
ment’ specifically redirecting Tyr11 towards an
aromatic pocket and an H-bond acceptor provided by
NTR1 residues that has to be addressed by Tyr11. This
explains the loss of affinity observed for our lactam-
Supplementary data
Supplementary data associated with this article can be
References and notes
1. Binder, E. B.; Kinkead, B.; Owens, M. J.; Nemeroff, C. B.
Pharmacol. Rev. 2001, 53, 453.
˚
bridged analogues (3a–d). Separated by a 1–4 A spacer
element, two bulky, hydrophobic moieties, which are
provided by Ile12 and Leu13 within the natural ligand,
are necessary. Additionally, H-bonding backbone-back-
bone interactions are crucial at this portion of the ligand
receptor complex, which was indicated by the above
mentioned SAR analysis. A polar, H-bonding C-termi-
nal portion and, not necessarily, a negatively charged
carboxylate is needed for high affinity ligand binding.
2. Tyler-McMahon, B.; Boules, M.; Richelson, E. Regul.
Peptides 2000, 93, 125.
3. Shilling, P. D.; Richelson, E.; Feifel, D. Behav. Brain Res.
2003, 143, 7.
4. St-Pierre, S.; Lalonde, J.-M.; Gendreau, M.; Quirion, R.;
Regoli, D.; Rioux, F. J. Med. Chem. 1981, 24, 370.
5. Hong, F.; Cusack, B.; Fauq, A.; Richelson, E. Curr. Med.
Chem. 1997, 4, 412, and references cited therein.
6. Rivier, J. E.; Lazarus, L. H.; Perrin, M. H.; Brown, M. R.
J. Med. Chem. 1977, 20, 1409.
In conclusion, structure activity relationship studies on a
series of NT(8-13) analogues provided valuable insights
into the major requirement for neurotensin receptor rec-
ognition and activation. The data facilitated the genera-
tion of a pharmacophore model. In combination with
our homology-based protein modelling and site directed
mutagenesis studies, this approach will guide us to non-
peptidic neurotensin receptor agonists that are suggested
to be of special interest for the treatment of
schizophrenia.
7. Cusack, B.; McCormick, D. J.; Pang, Y.-P.; Souder, T.;
Garcia, R.; Fauq, A.; Richelson, E. J. Biol. Chem. 1995,
270, 18359.
8. Henry, J. A.; Horwell, D. C.; Meecham, K. G.; Rees, D.
C. Bioorg. Med. Chem. Lett. 1993, 3, 949.
9. Pang, Y.-P.; Cusack, B.; Groshan, K.; Richelson, E.
J. Biol. Chem. 1996, 271, 15060.
`
10. Barroso, S.; Richard, F.; Nicolas-Etheve, D.; Reversat,
J.-L.; Bernassau, J.-M.; Kitabgi, P.; Labbe-Julie, C. J.
´
´
Biol. Chem. 2000, 275, 328.
11. Heyl, D. L.; Sefler, A. M.; He, J. X.; Sawyer, T. K.;
Wustrow, D. J.; Akunne, H. C.; Davis, M. D.; Pugsley, T.
A.; Heffner, T. G.; Corbin, A. E.; Cody, W. L. Int.
J. Peptide Protein Res. 1994, 44, 233.
12. Luca, S.; White, J. F.; Sohal, A. K.; Filippov, D. V.; van
Boom, J. H.; Grisshammer, R.; Baldus, M. Proc. Nat.
Acad. Soc. 2003, 100, 10706.
13. Bittermann, H.; Einsiedel, J.; Hubner, H.; Gmeiner, P.
¨
J. Med. Chem. 2004, 47, 5587.
14. Sefler, A. M.; He, J. X.; Sawyer, T. K.; Holub, K. E.;
Omecinsky, D. O.; Reily, M. D.; Thanabal, V.; Akunne,
H. C.; Cody, W. L. J. Med. Chem. 1995, 38, 249.
15. (a) Lundquist, J. T., IV; Dix, T. A. Bioorg. Med. Chem.
Lett. 1999, 9, 2579; (b) Lundquist, J. T., IV; Dix, T. A.
J. Med. Chem. 1999, 42, 4914.
16. (a) Nock, B. A.; Nikolopoulou, A.; Reubi, J.-C.; Maes, V.;
Conrath, P.; Tourwe, D.; Maina, T. J. Med. Chem. 2006,
49, 4767; (b) Maes, V.; Hultsch, C.; Kohl, S.; Bergmann,
R.; Hanke, T.; Tourwe, D. J. Pept. Sci. 2006, 12(8), 505.
17. (a) Achilefu, S.; Srinivasan, A.; Schmidt, M. A.; Jimenez,
H. N.; Bugaj, J. E.; Erion, J. L. J. Med. Chem. 2003, 46,
3403; (b) Hong, F.; Zaidi, J.; Cusack, B.; Richelson, E.
Bioorg. Med. Chem. 2002, 10, 3849.
18. For recent examples, see: (a) Hayen, A.; Schmitt, M. A.;
Ngassa, F. N.; Thomasson, K. A.; Gellman, S. H. Angew.
Chem. Int. Ed. 2004, 43, 505; (b) De Pol, S.; Zorn, C.;
Klein, C. D.; Zerbe, O.; Reiser, O. Angew. Chem. Int. Ed.
2004, 43, 511.
Figure 2. Pharmacophore model for NT(8-13) agonists. Functional
units are depicted as gray spheres. Straight black lines indicate fixed
distances and zigzag-lines indicate variable distances. Available space
is given for rough guidance on the left hand side.