J. D. Burch et al. / Bioorg. Med. Chem. Lett. 18 (2008) 2048–2054
Table 8. Pharmacokinetic parameters for compound 35a
2053
Species
Dose (mg/kg)
F (%)
T1/2 (h)
Cl (mL/min/kg)
Vdss (L/kg)
Metab.b (%)
po
iv
Mouse
Rat
Dog
100
20
4
10
10
5
44
73
69
40
—
3.5
14.8
13.2
3.8
2.6
0.6
0.2
2.0
—
0.7
0.7
0.2
0.3
—
—
6
20
39
36
Rhesus
Human
4
2
—
—
—
a The corresponding sodium salt was used for pharmacokinetic studies. F denotes bioavailability; T1/2 is the half-life in plasma, and is determined
from the intravenous (iv) data; Cl is plasma clearance; Vdss is the volume of distribution; po vehicle is 0.5% methocel; iv vehicle is 60% PEG 200.
b In vitro metabolism in standard hepatocytes (20 lM 35, 1 · 106 cells/0.5 mL, 2 h).
Table 9. Prostanoid receptor binding affinities (Ki, nM) for lead compounds 15 and 35a
Compound
EP1
EP2
EP3
EP4
DP
TP
FP
IP
15
35
>7000
>9000
1900 800
300 200
4000 1000
2700 1500
0.74 0.46
0.79 0.48
1200 300
53 16
630 120
39 26
2000 1000
340 240
>7000
2000 1000
a Values are means from at least three experiments; for details of the prostanoid binding assays see Ref. 10.
Acad. Sci. U.S.A. 1999, 96, 272; (b) FitzGerald, G. A.;
Patrono, C. N. Eng. J. Med. 2001, 345, 433; For a recent
review see: (c) Funk, C. D.; FitzGerald, G. A.
J. Cardiovasc. Pharm. 2007, 50, 470.
ED50 of approximately 0.005 mg/kg ([35]trough = 30 nM)
with once-daily dosing, making compound 35 one of the
most potent compounds reported in the rat-AIA model.
For comparison, the COX-2 inhibitor rofecoxib exhib-
ited an ED50 of 0.74 mg/kg/day in this model.16
5. McCoy, J. M.; Wicks, J. R.; Audoly, L. P. J. Clin. Invest.
2002, 110, 651.
6. Lin, C.-R.; Amaya, F.; Barrett, L.; Wang, H.; Takada, J.;
Samad, T. A.; Woolf, C. J. J. Pharmacol. Exp. Ther. 2006,
319, 1096.
7. Cipollone, F.; Fazia, M. L.; Iezzi, A.; Cuccurollo, C.; De
Cesare, D.; Ucchino, S.; Spigonardo, F.; Marchetti, A.;
Buttitta, F.; Paloscia, L.; Mascellanti, M.; Cuccurollo, F.;
Mezzetti, A. Arterioscler. Thromb. Vasc. Biol. 2005, 25,
1925.
In summary, we have presented a potent and selective
EP4 receptor antagonist (compound 35). This com-
pound exhibits subnanomolar binding potency for the
EP4 receptor and >50-fold selectivity against other pro-
stanoid receptors. Compound 35 is also potent in a func-
tional assay for EP4 antagonism, and exhibits good
pharmacokinetic properties across several preclinical
species. Potency was optimized and protein shift was
minimized by the introduction of ortho-substituents on
the central and eastern aromatic rings, and metabolic
liabilities were minimized by reducing the oxidative
instability of the dihydroquinone ether groups, and by
increasing the steric hindrance around the acylsulfona-
mide moiety. This compound has shown excellent effi-
cacy in an in vivo preclinical model of inflammation,
and further details of these discoveries will be reported
in due course.
8. (a) Ma, X.; Kundu, N.; Rifat, S.; Walser, R.; Fulton, A.
M. Cancer Res. 2006, 66, 2923; (b) Chell, S. D.; Wither-
den, I. R.; Dobson, R. R.; Moorghen, M.; Herman, A. A.;
Qualtrough, D.; Williams, A. C.; Paraskeva, C. Cancer
Res. 2006, 66, 3106; (c) Yang, L.; Huang, Y.; Porta, R.;
Yanagisawa, K.; Gonzalez, A.; Segi, E.; Johnson, D. J.;
Narumiya, S.; Carbone, D. P. Cancer Res. 2006, 66, 9665.
9. (a) Wilson, R. J.; Giblin, G. M. P.; Roomans, S.; Rhodes,
S. A.; Cartwright, K.; Shield, V. J.; Brown, J.; Wise, A.;
Chowdhury, J.; Pritchard, S.; Coote, J.; Noel, L. S.;
Kenakin, T.; Burns-Kurtis, C. L.; Morrison, V.; Gray, D.
W.; Giles, H. Br. J. Pharmacol. 2006, 148, 326; For other
examples of EP4 antagonists from the literature see: (b)
Brittain, R. T.; Boutal, L.; Carter, M. C.; Coleman, R. A.;
Collington, E. W.; Geisow, H. P.; Hallett, P.; Hornby, E.
J.; Humphrey, P. P.; Jack, D.; Kennedy, I.; Lumley, P.;
McCabe, P. J.; Skidmore, I. F.; Thomas, M.; Wallis, C. J.
Circulation 1985, 72, 1208; (c) Machwate, M.; Harada, S.;
Leu, C. T.; Seedor, G.; Labelle, M.; Gallant, M.;
Hutchins, S.; Lachance, N.; Sawyer, N.; Slipetz, D.;
Metters, K. M.; Rodan, S. B.; Young, R.; Rodan, G. A.
Mol. Pharmacol. 2001, 60, 36; (d) Mutoh, M.; Watanabe,
K.; Kitamura, T.; Shoji, Y.; Takahashi, M.; Kawamori,
T.; Tani, K.; Kobayashi, M.; Maruyama, T.; Kobayashi,
K.; Ohuchida, S.; Sugimoto, Y.; Narumiya, S.; Sugimura,
T.; Wakabayashi, K. Cancer Res. 2002, 62, 28; (e) Hattori,
K.; Tanaka, A.; Fuji, N.; Takasugi, H.; Tenda, Y.;
Tomita, M.; Nakazato, K.; Kato, Y.; Kono, Y.; Murai,
H.; Sakane, K. J. Med. Chem. 2005, 48, 3103; (f) Nakao,
K.; Murase, A.; Ohshiro, H.; Okumura, T.; Taniguchi, K.;
Murata, Y.; Masuda, M.; Kato, T.; Okumura, Y.;
Takada, J. J. Pharmacol. Exp. Ther. 2007, 322, 686.
References and notes
1. Flower, R. J. Nat. Rev. Drug Disc. 2003, 2, 179.
2. Bombardier, C.; Laine, L.; Reicin, A.; Shapiro, D.;
Burgos-Vargas, R.; Davis, B.; Day, R.; Bosi Ferraz, R.;
Hawkey, C. J.; Hochberg, M. C.; Kvien, T. K.; Schnitzer,
T. J. N. Eng. J. Med. 2000, 343, 1520.
3. (a) Solomon, S. D.; McMurray, J. J. V.; Pfeiffer, M. A.;
Wittes, J.; Fowler, R.; Finn, P.; Anderson, W. F.; Zauber,
A.; Hawk, E.; Bertagnolli, M. N. Eng. J. Med. 2005, 352,
1071; (b) Nussmeier, N. A.; Whelton, A. A.; Brown, M.
T.; Langford, R. M.; Hoeft, A.; Parlow, J. L.; Boyce, S.
W.; Verbug, K. M. N. Eng. J. Med. 2005, 352, 1081; (c)
Bresalier, R. S.; Sandler, R. S.; Quan, H.; Bolognese, J. A.;
Oxenius, B.; Horgan, K.; Lines, C.; Ridell, R.; Morton,
D.; Lanas, A.; Konstam, M. A.; Baron, J. A. N. Eng. J.
Med. 2005, 352, 1092.
4. (a) McAdam, B. F.; Catella-Lawson, F.; Mardini, I. A.;
Kapoor, S.; Lawson, J. A.; FitzGerald, G. A. Proc. Natl.