10048 J. Am. Chem. Soc., Vol. 122, No. 41, 2000
Boger et al.
ring system that lacks the sensitive â-hydroxy group of the
E-ring-substituted phenylalanine (residue 2) and incorporates
an especially racemization-prone substituted phenylglycine
(residue 3).17 Most significantly, it contains the additional 14-
membered diaryl ether FG ring system that is not found in
vancomycin. We recently disclosed a total synthesis18-22 of the
vancomycin aglycon, complementary to those of Evans and
Nicolaou, which enlisted a defined order to the introduction of
its CD, AB, and DE ring systems, which permits selective
thermal atropisomerism of the newly formed ring systems or
their immediate precursors.23-27 In addition to the diastereo-
selection that was achieved in each of the ring closures, this
order permitted the recycling of any undesired atropisomer for
each ring system and provided a means for reliable control of
the stereochemistry throughout the synthesis, funneling all
synthetic material into the natural atropisomer. A special
attraction of this approach was the recognition that the common
ABCD ring system of vancomycin, and teicoplanin could serve
as a key intermediate to both classes of natural products.
(13) Verbist, L.; Tjandramaga, B.; Hendrickx, B.; Van Hecken, A.; Van
Melle, P.; Verbesselt, R.; Verhaegaen, J.; De Schepper, P. J. Antimicrob.
Agents Chemother. 1984, 26, 881.
(14) Benet, L. Z.; Williams, R. L. In The Pharmacological Basis of
Therapeutics, 8th ed.; Gilman, A. G., Rall, T. W., Nies, A. S., Taylor, P.,
Eds.; Pergamon: New York, 1990; pp 1650-1735.
(15) Graninger, W.; Presterl, E.; Wenisch, C.; Schwameis, E.; Breyer,
S.; Vukovich, T. Drugs 1997, 54 (Suppl. 6), 21.
(16) Brogden, R. N.; Peters, D. H. Drugs 1994, 47, 823.
(17) Barna, J. C. J.; Williams, D. H.; Strazzolini, P.; Malabarba, A.;
Leung, T.-W. C. J. Antibiot. 1984, 37, 1204.
(18) Nicolaou, K. C.; Boddy, C. N. C.; Brase, S.; Winssinger, N. Angew.
Chem., Int. Ed. Engl. 1999, 38, 2096.
Prior to implementing this approach for teicoplanin20 and in
efforts to address a concern over its viability, we examined the
thermal atropisomerism of a series of teicoplanin aglycon
derivatives. The added constraints that the teicoplanin FG ring
system imposes on the conformational properties of the structure
were not clear, and it was expected to have a significant impact
on the ease of DE atropisomerism and could also alter the
thermodynamic atropisomer preference. Optimally, the DE ring
system would be capable of selective isomerism without
affecting the AB or CD atropisomer stereochemistry. Anticipat-
ing that the constraints of the FG ring system might preclude
selective thermal DE atropisomer equilibration, we examined
derivatives of the teicoplanin aglycon containing both the intact
and cleaved FG ring system. This approach provided the added
benefit that we could establish the relative sensitivity of both
types of derivatives toward C23 epimerization, which is known
to be especially facile for teicoplanin derivatives.17
Herein we provide details of studies that have defined
conditions suitable for selective teicoplanin DE versus CD or
AB atropisomerism and that provided appropriately function-
alized teicoplanin aglycon derivatives which served as relay
intermediates in a total synthesis of the natural product. Thus,
thermal atropisomerism of 6a or 10 and 12 provided 1:1
mixtures of the P,P,P and M,P,P-atropisomers 13, 14, and 15,
respectively, in which the DE atropisomers selectively equili-
brate. We also describe the conversion of 8 to the teicoplanin
aglycon, which constitutes the final stages of its total synthesis
and the conversion of M,P,P-13 to M,P,P-17, the corresponding
teicoplanin aglycon which possesses the unnatural DE antro-
pisomer stereochemistry.
(19) Rao, A. V. R.; Gurjar, M. K.; Reddy, K. L.; Rao, A. S. Chem. ReV.
1995, 95, 2135.
Teicoplanin Degradation. The degradation of 1 to a series
of aglucoteicoplanin derivatives is summarized in Scheme 1.
The removal of the three carbohydrates was accomplished by
treatment with 10% concentrated HCl-HOAc (80 °C, 1 h)29
or 80% aqueous H2SO4, DMSO (85-90 °C, 30 h).30 Although
the aglycon 2 could be isolated in pure form by semipreparative
reverse-phase HPLC, it proved to be more convenient to carry
the crude material forward without purification. N-Boc formation
(Boc2O, NaHCO3, DMF, 25 °C), followed by methyl ester
formation (CH3I, NaHCO3, DMF, 25 °C) conducted in situ
without isolation of the carboxylic acid 3, provided 4a (50%
overall from 1). Exhaustive methylation of the six phenols
(CH3I, K2CO3, DMF, 25 °C) and O-silylation of the C36 alcohol
of 5a (CF3CONMeTBS, CH3CN, 45 °C) afforded 6a. Methyl
ester reduction (LiBH4, (MeO)3B, THF, 45 °C), followed by
MEM protection of the primary alcohol 7 (MEMCl, i-Pr2NEt,
CH2Cl2, 25 °C), provided 8. This sequence was also conducted
with formation of the benzyl versus methyl ester (PhCH2Br,
NaHCO3, 45% overall from 1), providing 4b, an intermediate
which is often easier to purify than 4a.
(20) Vancomycin aglycon: Boger, D. L.; Miyazaki, S.; Kim, S. H.; Wu,
J. H.; Loiseleur, O.; Castle, S. L. J. Am. Chem. Soc. 1999, 121, 3226. Boger,
D. L.; Miyazaki, S.; Kim, S. H.; Wu, J. H.; Castle, S. L.; Loiseleur, O.;
Jin, Q. J. Am. Chem. Soc. 1999, 121, 10004. Teicoplanin aglycon: Boger,
D. L.; Kim, S. H.; Miyazaki, S.; Strittmatter, H.; Weng, J.-H.; Mori, Y.;
Rogel, O.; Castle, S. L.; McAtee, J. J. J. Am. Chem. Soc. 2000, 122, 7416.
(21) Orienticin C aglycon: Evans, D. A.; Barrow, J. C.; Watson, P. S.;
Ratz, A. M.; Dinsmore, C. J.; Evrard, D. A.; DeVries, K. M.; Ellman, J.
A.; Rychnovsky, S. D.; Lacour, J. J. Am. Chem. Soc. 1997, 119, 3419.
Evans, D. A.; Dinsmore, C. J.; Ratz, A. M.; Evrard, D. A.; Barrow, J. C.
J. Am. Chem. Soc. 1997, 119, 3417. Vancomycin aglycon: Evans, D. A.;
Wood, M. R.; Trotter, B. W.; Richardson, T. I.; Barrow, J. C.; Katz, J. L.
Angew. Chem., Int. Ed. Engl. 1998, 37, 2700. Evans, D. A.; Dinsmore, C.
J.; Watson, P. S.; Wood, M. R.; Richardson, T. I.; Trotter, B. W.; Katz, J.
L. Angew. Chem., Int. Ed. Engl. 1998, 37, 2704.
(22) Nicolaou, K. C.; Li, H.; Boddy, C. N. C.; Ramanjulu, J. M.; Yue,
T.-Y.; Natarajan, S.; Chu, X.-J.; Brase, S.; Rubsam, F. Chem. Eur. J. 1999,
5, 2584. Nicolaou, K. C.; Boddy, C. N. C.; Li, H.; Koumbis, A. E.; Hughes,
R.; Natarajan, S.; Jain, N. F.; Ramanjulu, J. M.; Brase, S.; Solomon, M. E.
Chem. Eur. J. 1999, 5, 2602. Nicolaou, K. C.; Koumbis, A. E.; Takayanagi,
M.; Natarajan, S.; Jain, N. F.; Bando, T.; Li, H.; Hughes, R. Chem. Eur. J.
1999, 5, 2622. Nicolaou, K. C.; Mitchell, H. J.; Jain, N. F.; Bando, T.;
Hughes, R.; Winssinger, N.; Natarajan, S.; Koumbis, A. E. Chem. Eur. J.
1999, 5, 2648. Nicolaou, K. C.; Mitchell, H. J.; Jain, N. F.; Winssinger,
N.; Hughes, R.; Bando, T. Angew. Chem., Int. Ed. Engl. 1999, 38, 240.
Nicolaou, K. C.; Takayanagi, M.; Jain, N. F.; Natarajan, S.; Koumbis, A.
E.; Bando, T.; Ramanjulu, J. M. Angew. Chem., Int. Ed. Engl. 1998, 37,
2717. Nicolaou, K. C.; Natarajan, S.; Li, H.; Jain, N. F.; Hughes, R.;
Solomon, M. E.; Ramanjulu, J. M.; Boddy, C. N. C.; Takayanagi, M. Angew.
Chem., Int. Ed. Engl. 1998, 37, 2708. Nicolaou, K. C.; Jain, N. F.;
Nataranjan, S.; Hughes, R.; Solomon, M. E.; Li, H.; Ramanjulu, J. M.;
Takayanagi, M.; Koumbis, A. E.; Bando, T. Angew. Chem., Int. Ed. Engl.
1998, 37, 2714.
For access to derivatives that lack the FG ring system, the
N-terminus amide was reductively cleaved following a modi-
fication to protocols disclosed in studies conducted on N-Boc
aglucoteicoplanin.31 Thus, treatment of 8 with LiBH4 (10%
H2O-EtOH, 25 °C) cleanly led to reductive cleavage of the
FG ring system at the N-terminus amide to provide 9 (66%,
(23) Boger, D. L.; Borzilleri, R. M.; Nukui, S.; Beresis, R. T. J. Org.
Chem. 1997, 62, 4721. Boger, D. L.; Borzilleri, R. M.; Nukui, S. Bioorg.
Med. Chem. Lett. 1995, 5, 3091.
(24) Boger, D. L.; Castle, S. L.; Miyazaki, S.; Wu, J. H.; Beresis, R. T.;
Loiseleur, O. J. Org. Chem. 1999, 64, 70.
(25) Boger, D. L.; Loiseleur, O.; Castle, S. L.; Beresis, R. T.; Wu, J. H.
Bioorg. Med. Chem. Lett. 1997, 7, 3199.
(26) Boger, D. L.; Beresis, R. T.; Loiseleur, O.; Wu, J. H.; Castle, S. L.
Bioorg. Med. Chem. Lett. 1998, 8, 721.
(28) The natural AB atropisomers within the ABCD and ABCDE ring
systems of vancomycin are also the thermodynamically most stable (g 95:
5) ensuring that the DE equilibration does not affect the AB stereochemistry.
(29) Malabarba, A.; Ferrari, P.; Gallo, G. G.; Kettenring, J.; Cavalleri,
B. J. Antibiot. 1986, 39, 1430.
(30) We thank Dr. A. Malabarba and Dr. G. Panzon (Lepetit Research
Center, Via R. Lepetit 34, 21040 Geranzano, Italy) for providing this
procedure.
(27) Boger, D. L.; Miyazaki, S.; Loiseleur, O.; Beresis, R. T.; Castle, S.
L.; Wu, J. H.; Jin, Q. J. Am. Chem. Soc. 1998, 120, 8920.
(31) Malabarba, A.; Ciabatti, R.; Kettenring, J.; Ferrari, P.; Vekey, K.;
Bellasio, E.; Denaro, M. J. Org. Chem. 1996, 61, 2137.