G. Liu et al. / Tetrahedron: Asymmetry 19 (2008) 1297–1303
1303
7.28–7.41 (m, 5H, ArH) ppm; 13C NMR (100 MHz, CDCl3, diastereo-
meric mixture) 28: d 21.0, 23.0, 23.1, 23.9, 25.0, 40.0, 40.7, 41.1,
47.0, 47.3, 52.0, 52.3, 69.3, 71.5, 72.6, 113.9, 125.5, 125.9, 128.0,
128.2, 128.7, 128.9, 129.0, 129.3, 129.6, 129.7, 143.6, 144.0, 158.9
(2C), 161.5, 167.0, 167.1, 170.4 ppm; MS (ESI) m/z 420 (M+Na+,
100%). Anal. Calcd for C23H27NO5: C, 69.50; H, 6.85; N, 3.52. Found:
C, 69.38; H, 7.09; N, 3.49.
6. For confirmation of the structure of pseudoconhydrine by synthesis, see: (a)
Marion, L.; Cockburn, W. F. J. Am. Chem. Soc. 1949, 71, 3402–3404; (b) Hill, R. K.
J. Am. Chem. Soc. 1958, 80, 1611–1613; For isolation of N-methyl
pseudoconhydrine, see: (c) Roberts, M. F.; Brown, R. T. Phytochemistry 1981,
20, 447–449.
7. For recent syntheses of pseudoconhydrine, see: (a) Plehiers, M.; Hootelé, C.
Tetrahedron Lett. 1993, 34, 7569–7570; (b) Takahata, H.; Inose, K.; Momose, T.
Heterocycles 1994, 38, 269–272; (c) Oppolzer, W.; Bochet, C. G. Tetrahedron Lett.
1995, 36, 2959–2962; (d) Sakagami, H.; Kamikubo, T.; Ogasawara, K. J. Chem.
Soc., Chem. Commun. 1996, 1433–1434; (e) Fry, D. F.; Brown, M.; McDonald, J.
C.; Dieter, R. K. Tetrahedron Lett. 1996, 37, 6227–6230; (f) Plehiers, M.; Hootelé,
C. Can. J. Chem. 1996, 74, 2444–2453; (g) Hirai, Y.; Shibuya, K.; Fukuda, Y.;
Yokoyama, H.; Yamaguchi, S. Chem. Lett. 1997, 221–222; (h) Cossy, J.; Dumas,
C.; Pardo, D. G. Synlett 1997, 905–906; (i) Dockner, M.; Sasaki, N. A.; Riche, C.;
Potier, P. Lieb. Ann.-Recueil 1997, 1267–1272; (j) Moody, C. J.; Lightfoot, A. P.;
Gallagher, P. T. J. Org. Chem. 1997, 62, 746–748; (k) Agami, C.; Couty, F.; Lam, H.;
Mathieu, H. Tetrahedron 1998, 54, 8783–8796; (l) Löfstedt, J.; Pettersson-Fasth,
H.; Bäckvall, J.-E. Tetrahedron 2000, 56, 2225–2230. and 5551–5552; For
syntheses of N-methylpseudoconhydrine, see: (m) Shono, T.; Matsumura, M.;
Onomura, O.; Sato, M. J. Org. Chem. 1988, 53, 4118–4121; (n) Herdeis, C.; Held,
W. A.; Kirfel, A.; Schwabenlander, F. Liebigs Ann. 1995, 1295–1301; (o)
Ref. 7d.; (p) Ref. 7f.; (q) Bartels, M.; Zapico, J.; Gallagher, T. Synlett 2004,
2636–2638.
8. Ibebeke-Bomangwa, W.; Hootelé, C. Tetrahedron 1987, 43, 935–945.
9. For synthesis of 5-hydroxysedamine (7), see: (a) Ref. 8 (racemic synthesis
followed by optical resolution); (b) Ref. 7a; (c) Ref. 7f; (d) Ref. 7m.
10. (a) Jung, J.-C.; Avery, M. A. Tetrahedron: Asymmetry 2006, 17, 2479–2486; (b)
Hoarau, S.; Fauchere, J. L.; Pappalardo, L.; Roumestant, M. L.; Viallefont, P.
Tetrahedron: Asymmetry 1996, 7, 2585–2593; (c) Agami, C.; Couty, F.; Mathieu,
H. Tetrahedron Lett. 1996, 37, 4001–4002; (d) Herdeis, C.; Heller, E. Tetrahedron:
Asymmetry 1993, 4, 2085–2094; (e) Herdeis, C.; Engel, W. Tetrahedron:
Asymmetry 1991, 2, 945–948; (f) Couty, F. Amino Acids 1999, 16, 297–320; (g)
Botman, P. N. M.; Dommerholt, F. J.; de Gelder, R.; Broxterman, Q. B.;
Schoemaker, H. E.; Rutjes, F. P. J. T.; Blaauw, R. H. Org. Lett. 2004, 6, 4941–4944.
11. (a) Momose, T.; Toyooka, N.; Jin, M. J. Chem. Soc., Perkin Trans. 1 1997, 2005–
2013; (b) Oetting, J.; Holzkamp, J.; Meyer, H. H.; Pahl, A. Tetrahedron:
Asymmetry 1997, 8, 477–484; (c) Toyooka, N.; Momose, T.; Nemoto, H. J.
Synth. Org. Chem. Jpn. 1999, 57, 1073–1083; (d) Leverett, C. A.; Cassidy, M. P.;
Padwa, A. J. Org. Chem. 2006, 71, 8591–8601; Makabe, H.; Kong, L. K.; Hirota, M.
Org. Lett. 2003, 5, 27–29; (e) Herdeis, C.; Kupper, P.; Ple, S. Org. Biomol. Chem.
2006, 4, 524–529; (f) Kim, G.; Kim, N. Tetrahedron Lett. 2007, 48, 4481–4483.
12. (a) Momose, T.; Toyooka, N. Tetrahedron Lett. 1993, 34, 5785–5786; Momose,
T.; Toyooka, N.; Jin, M. J. Chem. Soc., Perkin Trans. 1 1997, 2005–2013; (b)
Toyooka, N.; Yoshida, Y.; Yotsui, Y.; Momose, T. J. Org. Chem. 1999, 64, 4914–
4919; (c) Lee, Y. S.; Shin, Y. H.; Kim, Y. H.; Lee, K. Y.; Oh, C. Y.; Pyun, S. J.; Park, H.
J.; Jeong, J. H.; Ham, W. H. Tetrahedron: Asymmetry 2003, 14, 87–93; (d) Trost, B.
M.; Ball, Z. T.; Laemmerhold, K. M. J. Am. Chem. Soc. 2005, 127, 10028–10038.
13. (a) Hirar, Y.; Watanabe, J.; Nozaki, T.; Yokoyama, H.; Seiji, Y. J. Org. Chem. 1997,
62, 776–777; (b) Ojima, I.; Vidal, E. S. J. Org. Chem. 1998, 63, 7999–8003; (c) Ref.
12b.; (d) Comins, D. L.; Sandelier, M. J.; Grillo, T. A. J. Org. Chem. 2001, 66, 6829–
6832; (e) Andres, J. M.; Pedrosa, R.; Perez-Encabo, A. Tetrahedron Lett. 2006, 47,
5317–5320.
4.1.15. (3S,6S)-1-(4-Methoxybenzyl)-6-(2-oxo-2-phenylethyl)-
2-oxopiperidin-3-yl acetate 20a
To a solution of 28a,b (37 mg, 0.1 mmol) in DMSO (3 mL) was
added o-iodoxybenzoic acid (IBX, 52 mg, 0.19 mmol). After stirring
at room temperature for 2 h, the reaction mixture was diluted with
Et2O (5 mL) and quenched with H2O (3 mL). The mixture was fil-
tered, through a pad of Celite and washed with Et2O. The organic
layer was separated, washed with brine, dried over anhydrous
Na2SO4, filtered and concentrated under reduced pressure. The res-
idue was purified by flash chromatography on silica gel eluting
with EtOAc/petroleum ether (1:1) to afford 20a (27 mg, yield:
20
73%) as a colorless oil. ½aꢁD ¼ þ6:9 (c 1.4, CHCl3); IR (film) 3386,
2929, 1735, 1652, 1507, 1454, 1364, 1233, 1029 cmꢀ1 1H NMR
;
(400 MHz, CDCl3) d 1.80–1.88 (m, 1H, CH2CH2), 1.89–2.00 (m, 1H,
CH2CH2), 2.03–2.11 (m, 2H, CH2CH2), 2.14 (s, 3H, COCH3), 3.23–
3.38 (m, 2H, PhCOCH2), 3.73 (s, 3H, ArOCH3), 3.95 (d, 1H,
J = 14.7 Hz, ArCH2), 4.10–4.18 (m, 1H, NCH), 5.07 (d, 1H,
J = 14.7 Hz, ArCH2), 5.09 (dd, 1H, J = 10.6, 7.5 Hz, NCOCH), 6.76–
6.82 (m, 2H, ArH), 7.13–7.18 (m, 2H, ArH), 7.40–7.47 (m, 2H,
ArH), 7.52–7.59 (m, 1H, ArH), 7.81–7.87 (m, 2H, ArH) ppm; 13C
NMR (100 MHz, CDCl3) d 21.0, 23.1, 25.2, 40.6, 48.1, 51.7, 55.2,
69.8, 114.1, 128.0, 128.8, 128.9, 129.5, 133.6, 136.4, 159.1, 167.4,
170.4, 197.5 ppm. MS (ESI) m/z 418 (M+Na+, 100%).
Acknowledgments
The authors are grateful to the NSFC (20572088), Qiu Shi Sci-
ence and Technologies Foundation, and the program for Innovative
Research Team in Science and Technology (University) in Fujian
Province for financial support. The project is partially supported
by Fujian Provincial Training Foundation for ‘Bai-Qian-Wan Talents
Engineering’. We thank Professor Y. F. Zhao for the use of her Bru-
ker Dalton Esquire 3000 plus LC–MS apparatus.
14. (a) Krow, G. R.; Johnson, C. Synthesis 1979, 50–51; (b) Fukuyama, T.; Frank, R.
K., ; Jewell, C. F., Jr. J. Am. Chem. Soc. 1980, 102, 2122–2123; (c) Herdeis, C.;
Held, W. A.; Kirfel, A.; Schwabenlander, E. Tetrahedron 1996, 52, 6409–6420;
(d) Chung, H. K.; Kim, H. W.; Chung, K. H. Bull. Korean Chem. Soc. 1999, 20, 325–
328.
References
15. (a) Gltterman, C. O.; Rlckes, E. L.; Wolf, D. E.; Madas, J.; Zimmerman, S. B.;
Stoudt, T. H.; Demny, T. C. J. Antibiot. 1970, 23, 305–310; (b) Pettit, G. R.; Von
Dreele, R. B.; Herald, D. L.; Edgar, M. T.; Wood, H. B., Jr. J. Am. Chem. Soc. 1976,
98, 6742–6743.
16. For syntheses of 3-epi-pseudoconhydrine see: (a) Ref. 7b.; (b) Herdeis, C.;
Schiffer, T. Synthesis 1997, 1405–1410; (c) Ref. 7g.; (d) Ref. 7k.
17. For reviews on a-amidoalkylation, see: (a) Zaugg, H. E. Synthesis 1984, 85–110.
and 181–212; For reviews on N-acyliminium ions, see: (b) Speckamp, W. N.;
Hiemstra, H. Tetrahedron 1985, 41, 4367–4416; (c) Speckamp, W. N.;
Moolenaar, M. J. Tetrahedron 2000, 56, 3817–3856; (d) Bur, S. K.; Martin, S. F.
Tetrahedron 2001, 57, 3221–3242; (e) Marson, C. M. Arkivoc 2001, part 1, 1–16,
J.; Maryanoff, C. A. Chem. Rev. 2004, 104, 1431–1628; (g) Royer, J. Chem. Rev.
2004, 104, 2311–2352.
18. Feng, C. G.; Chen, J.; Ye, J. L.; Ruan, Y. P.; Zheng, X.; Huang, P. Q. Tetrahedron
2006, 62, 7459–7465.
19. Bandgar, B. P.; Sadavarte, V. S.; Uppalla, L. S. J. Chem. Soc., Perkin Trans. 1 2000,
3559–3560.
20. For a neighboring group participation effect in a pyrrolidine ring system, see:
Renaud, P.; Seebach, D. Helv. Chim. Acta 1986, 69, 1704–1710.
21. Boudreault, N.; Ball, R. G.; Bayly, C.; Bernstein, M. A.; Leblanc, Y. Tetrahedron
1994, 50, 7947–7956.
1. For reviews on the piperidine alkaloids, see: (a) Strunz, G. M.; Findlay, J. A.
Pyridine and Piperidine Alkaloids. In The Alkaloids; Brossi, A., Ed.; Academic
Press: New York, 1985; Vol. 26, pp 89–183; (b) Schneider, M. Pyridine and
Piperidine Alkaloids: An Update. In Alkaloids: Chemical and Biochemical
Perspectives; Pelletier, S. W., Ed.; Elsevier Science: Oxford, 1996; Vol. 10, pp
155–299.
2. (a) Pinder, A. R. Nat. Prod. Rep. 1986, 3, 171–180; (b) Pinder, A. R. Nat. Prod. Rep.
1989, 6, 67–78; (c) Pinder, A. R. Nat. Prod. Rep. 1992, 9, 17–23; (d) Pinder, A. R.
Nat. Prod. Rep. 1992, 9, 491–504.
3. For recent reviews on the syntheses of 3-piperidinols and related compounds,
see: (a) Ciufolini, M. A.; Hermann, C. Y. W.; Dong, Q.; Shimizu, T.; Swaminathan,
S.; Xi, N. Synlett 1998, 105–114; (b) Bailey, P. D.; Millwood, P. A.; Smith, P. D.
Chem. Commun. 1998, 633–640; (c) Zhou, W. S.; Lu, Z. H.; Xu, Y. M.; Liao, L. X.;
Wang, Z. M. Tetrahedron 1999, 55, 11959–11983; (d) Laschat, S.; Dickner, T.
Synthesis 2000, 1781–1812; (e) Toyooka, N.; Nemoto, H. Drugs Future 2002, 27,
143–158; (f) Weintraub, P. M.; Sabol, J. S.; Kane, J. M.; Borcherding, D. R.
Tetrahedron 2003, 59, 2953–2989; (g) Felpin, F.-X.; Lebreton, J. Eur. J. Org. Chem.
2003, 3693–3712.
4. For accounts of methodologies, see: (a) Huang, P.-Q. Recent Advances on the
Asymmetric Synthesis of Bioactive 2-Pyrrolidinone-related Compounds
Starting from Enantiomeric Malic Acid. In New Methods for the Asymmetric
Synthesis of Nitrogen Heterocycles; Vicario, J. L., Badia, D., Carrillo, L., Eds.;
Research Signpost: Kerala, 2005; pp 197–222; (b) Huang, P.-Q. Synlett 2006,
1133–1149.
22. Deslongchamps, P. Stereoelectronic Effetcs in Organic Chemistry; Pergamon: New
York, 1983.
23. Yang, D.; Zhang, C. J. Org. Chem. 2001, 66, 4814–4818.
5. For recent example, see: (a) Wei, B. G.; Chen, J.; Huang, P.-Q. Tetrahedron 2006,
62, 190–198; (b) Huang, P.-Q.; Guo, Z.-Q.; Ruan, Y.-P. Org. Lett. 2006, 8, 1435–
1438.
24. (a) Frigerio, M.; Santagostino, M. Tetrahedron Lett. 1994, 35, 8019–8022; (b)
Frigerio, M.; Santagostino, M.; Sputore, S.; Palmisano, G. J. Org. Chem. 1995, 60,
7272–7276.