Highly Enantioselective Sequential Hydrogenation of Ethyl
2-Oxo-4-arylbut-3-enoate to Ethyl 2-Hydroxy-4-arylbutyrate
Qinghua Meng,† Lufeng Zhu,† and Zhaoguo Zhang*,†,‡
School of Chemistry and Chemical Technology, Shanghai Jiaotong UniVersity, 800 Dongchuan Road,
Shanghai 200240, China, and Shanghai Institute of Organic Chemistry, 354 Fenglin Road,
Shanghai 200032, China
ReceiVed May 26, 2008
The hydrogenation of (E)-ethyl 2-oxo-4-arylbut-3-enoate with [NH2Me2]+[{RuCl [(S)-SunPhos]}2(µ-
Cl3)] gave ethyl 2-hydroxy-4-arylbutyrate with 94-96% ee. Further investigation has proved that the
hydrogenation proceeded via a sequential hydrogenation of CdO and CdC bonds, which is sensitive to
the reaction temperature. Hydrolysis of ethyl 2-hydroxy-4-phenylbutyrate (ee 93%) provided the 2-hydroxy-
4-phenylbutyric acid with 81% yield at 99% ee after a single recrystallization from 1, 2-dichloroethylene.
Introduction
to prepare such ACE inhabitors. A number of routes to (R)-2-
hydroxy-4-phenylbutyrate have been developed, including clas-
sical resolution of the hydroxyl racemic acid;3 catalytic enan-
tioselective reduction of a prochiral ketone by chemical,4
microbial, or enzymatic reduction;5 and chiral pool synthesis.6
Enantioselective hydrogenation of ethyl 2-oxo-4-phenylbu-
tanoate is likely one of the most economic and efficient method;
however, it suffers from instability of the R-ketoesters and
sensitivity of enantioselective hydrogenation to substrate purity.1i,4f
Therefore, the search for effective, highly enantioselective, and
Asymmetric hydrogenation catalyzed by transition metal
complexes containing optically active phosphine ligands has
attracted significant interest in industry and academia for its
synthetic utility.1 A variety of commercially important angio-
tensin-converting enzyme (ACE) inhibitors containing an (S)-
homophenylalanine moiety can be synthesized from various
chiral building blocks.2 Among them, enantiomerically pure
ethyl (R)-2-hydroxy-4-phenylbutyrate is a useful intermediate
† Shanghai Jiaotong University.
(3) Attwood, M. R.; Hassall, C. H.; Krohn, A.; Lawton, G.; Redshaw, S.
J. Chem. Soc., Perkin Trans. 1 1986, 1011.
‡ Shanghai Institute of Organic Chemistry.
(1) (a) Ohkuma, T.; Noyori, R. In Transition Metals for Organic Synthesis,
Building Blocks and Fine Chemicals; Beller, M., Bolm, C., Eds.; Wiley-VCH:
Weinheim, 1998; Vols. 2. (b) Blaser, H.-U.; Pugin, B.; Spindler, F. Applied
Homogeneous Catalysis with Organometallic Compounds, 2nd ed.; Cornils, B.,
Herrmann, W. A., Eds.; Wiley-VCH: Weinheim, 2000; Chapter 3.3.1. (c) Noyori,
R.; Ohkuma, T. Angew. Chem., Int. Ed. 2001, 40, 40. (d) Noyori, R. Angew.
Chem., Int. Ed. 2002, 41, 2008. (e) Knowles, W. S. Angew. Chem., Int. Ed.
2002, 41, 1998. (f) Rossen, K. Angew. Chem., Int. Ed. 2001, 40, 4611. (g) Pfaltz,
A.; Blankenstein, J.; Hilgraf, R.; Hormann, E.; McIntyre, S.; Menges, F.;
Schonleber, M.; Smidt, S. P.; Wustenberg, B.; Zimmermann, N. AdV. Synth.
Catal. 2003, 345, 33. (h) Blaser, H.-U.; Malan, C.; Pugin, B.; Spindler, F.; Steiner,
H.; Studer, M. AdV. Synth. Catal. 2003, 345, 103. (i) Asymmetric Catalysis on
Industrial Scale: Challenges, Approaches and Solutions; Blaser, H.-U., Schmidt,
E., Eds.; Wiley-VCH: Weinheim, 2004. (j) Jakel, C.; Paciello, R. Chem. ReV.
2006, 106, 2912. (k) Knowles, W. S.; Noyori, R. Acc. Chem. Res. 2007, 40,
1238.
(4) (a) Iwasaki, G.; Kimura, R.; Numao, N.; Kondo, K. Chem. Pharm. Bull.
1989, 37, 280. (b) Belzecki, C.; Panfil, I. J. Org. Chem. 1979, 44, 1212. (c)
Andre´s, C.; Delgado, M.; Pedrosa, R.; Rodr´ıguez, R. Tetrahedron Lett. 1993,
34, 8325. (d) LeBlond, C.; Wang, J.; Liu, J.; Andrews, A. T.; Sun, Y.-K. J. Am.
Chem. Soc. 1999, 121, 4920. (e) Benincori, T.; Cesarotti, E.; Piccolo, O.;
Sannicolo`, F. J. Org. Chem. 2000, 65, 2043. (f) Herold, P.; Indolese, A. F.;
Studer, M.; Jalett, H. P.; Siegrist, U.; Blaser, H. U. Tetrahedron 2000, 56, 6497.
(g) Saito, T.; Yokozawa, T.; Ishizaki, T.; Moroi, T.; Sayo, N.; Miura, T.;
Kumobayashi, H. AdV. Synth. Catal. 2001, 343, 264. (h) Benincori, T.; Piccolo,
O.; Rizzo, S.; Sannicolo, F. J. Org. Chem. 2002, 65, 8340. (i) Wang, C.-J.; Sun,
X.; Zhang, X. Synlett 2006, 1169. (j) Sun, X.; Zhou, L.; Li, W.; Zhang, X. J.
Org. Chem. 2008, 73, 1143.
(5) (a) Dao, D. H.; Okamura, M.; Akasaka, T.; Kawai, Y.; Hida, K.; Ohno,
A. Tetrahedron: Asymmetry 1998, 9, 2725. (b) Chen, Y.; Lin, H.; Xu, X.; Xia,
S.; Wang, L. AdV. Synth. Catal. 2008, 350, 426.
(6) Lin, W.-Q.; He, Z.; Jing, Y.; Cui, X.; Liu, H.; Mi, A.-Q. Tetrahedron:
Asymmetry 2001, 12, 1583.
(2) Sheldon, R. A. Chim. Oggi 1991, 35.
10.1021/jo801140j CCC: $40.75
Published on Web 08/22/2008
2008 American Chemical Society
J. Org. Chem. 2008, 73, 7209–7212 7209