S. Jaroch et al. / Bioorg. Med. Chem. Lett. 12 (2002) 2561–2564
2563
followed by depivaloylation and cyclization. Further
introduction of substituents into the benzene ring is
feasible at the dihydroquinolone stage through classical
aromatic substitution reactions.18
2. Reviews Kerwin, J. F.; Lancaster, J. R.; Feldman, P. L. J.
Med. Chem. 1995, 38, 4343. Pfeiffer, S.; Mayer, B.; Hemmens,
B. Angew. Chem. 1999, 111, 1824. Pfeiffer, S.; Mayer, B.;
Hemmens, B. Angew. Chem., Int. Ed. 1999, 38, 1714.
3. Marletta, M. A. J. Med. Chem. 1994, 37, 1899.
4. For an overview of recent patent applications in the NOS
field, see: Cheshire, D. R. IDrugs 2001, 4, 795. Lowe, J. A., III
IDrugs 2000, 3, 63. Some recent literature reports on n-NOS
inhibitors are. Beaton, H.; Hamley, P.; Nicholls, D. J.; Tinker,
A. C.; Wallace, A. V. Bioorg. Med. Chem. Lett. 2001, 11, 1023.
Beaton, H.; Boughton-Smith, N.; Hamley, P.; Ghelani, A.;
Nicholls, D. J.; Tinker, A. C.; Wallace, A. V. Bioorg. Med.
Chem. Lett. 2001, 11, 1027. Hah, J.-M.; Roman, L. J.; Mar-
tasek, P.; Silverman, R. B. J. Med. Chem. 2001, 44, 2677. Lee,
Y.; Martasek, P.; Roman, L. J.; Silverman, R. B. Bioorg. Med.
Chem. Lett. 2000, 10, 2771. Huang, H.; Martasek, P.; Roman,
L. J.; Silverman, R. B. J. Med. Chem. 2000, 43, 2938. Huang,
H.; Martasek, P.; Roman, L. J.; Masters, B. S. S.; Silverman,
R. B. J. Med. Chem. 1999, 42, 3147. Lowe, J. A., III; Qian,
W.; Volkmann, R. A.; Heck, S.; Nowakowski, J.; Nelson, R.;
Nolan, C.; Liston, D.; Ward, K.; Zorn, S.; Johnson, C.;
Vanase, M.; Faraci, W. S.; Verdries, K. A.; Baxter, J.; Doran,
S.; Sanders, M.; Ashton, M.; Whittle, P.; Stefaniak, M. Bioorg.
Med. Chem. Lett. 1999, 9, 2569. Collins, J. L.; Shearer, B. G.;
Oplinger, J. A.; Lee, S.; Garvey, E. P.; Salter, M.; Duffy, C.;
Burnette, T. C.; Furfine, E. S. J. Med. Chem. 1998, 41, 2858.
Shearer, B. G.; Lee, S.; Oplinger, J. A.; Frick, L. W.; Garvey,
E. P.; Furfine, E. S. J. Med. Chem. 1997, 40, 1901.
5. The compound was synthesized by adding proline to 1-
fluoro-2-nitrobenzene (cf. Abou-Gharbia, M.; Freed, M. E.;
McCaully, R. J.; Silver, P. J.; Wendt, R. L. J. Med. Chem.
1984, 27, 1743) followed by zinc reduction and amidine for-
mation as described in Scheme 1.
6. A well-known property which was used for a 2-aminoqui-
noxaline synthesis by Pfister, K., III; Sullivan, A. P., Jr.;
Weijlard, J.; Tishler, M. J. Am. Chem. Soc. 1951, 73, 4955. A
new example is given in Maidwell, N. L.; Rezai, M. R.; Roes-
chlaub, C. A.; Sammes, P. G. J. Chem. Soc., Perkin Trans. 1
2000, 1541.
7. Iminopiperidines are described as i-NOS inhibitors in Moore,
W. M.; Webber, R. K.; Fok, K. F.; Jerome, G. M.; Connor, J. R.;
Manning, P. T.; Wyatt, P. S.; Misko, T. P.; Tjoeng, F. S.; Currie,
M . G.J. Med. Chem. 1996, 39, 669. Webber, R. K.; Metz, S.;
Moore, W. M.; Connor, J. R.; Currie, M. G.; Fok, K. F.;
Hagen, T. J.; Hansen, D. W., Jr.; Jerome, G. M.; Manning,
P. T.; Pitzele, B. S.; Toth, M. V.; Trivedi, M.; Zupec, M. E.;
Tjoeng, F. S. J. Med. Chem. 1998, 41, 96.
8. Woodward, R. B.; Hoffmann, R. Angew. Chem., Int. Ed. 1969,
8, 781. Santelli-Rouvier, C.; Santelli, M. Synthesis 1983, 429.
Jones, T. K.; Denmark, S. E. Helv. Chim. Acta 1983, 66, 2397.
9. Baker, W.; Jones, P. G. J. Chem. Soc. 1951, 787. Ohta, S.;
Yamashita, M.; Arita, K.; Kajiura, T.; Kawasaki, I.; Noda,
K.; Izumi, M. Chem. Pharm. Bull. 1995, 43, 1294.
We started to explore the SAR of the dihydroquinolines
by determining the optimal ring size of the annulated
ring. As is apparent from Table 1 (3–5) both cyclohex-
ane and cycloheptane annulation led to a dramatic loss
in potency. The cyclopentane could be replaced by a
tetrahydrofuran ring at the expense of diminished
selectivity versus e-NOS (6). Substitution at or removal
of the 4-amino group was detrimental for activity (7–9).
Modification of the benzene substitution pattern
allowed us to improve the selectivity versus e-NOS.
Whereas substitution at C-7 was broadly accepted irre-
spective of the electronic nature of the substituent and
had only minor effects on the selectivity against e-NOS
(18–21), introduction of residues at position 8 had a
more severe impact (10–17). The 8-chloro derivative 12
proved to be more potent than both the methyl or
methoxy analogue 10 and 17. In the 8-halogen series,
increasing the size of the substituent correlated with a
moderate loss in potency (11–14) with the maximum
selectivity against e-NOS found for the bromo deriva-
tive 13. A more than 100-fold selectivity and a fair
potency was observed for the 8-nitro derivative 15,
while the high selectivity of 8-cyanoquinoline 16 was
compromised by a drop in potency. The 6-fluoro deri-
vative 22 showed a moderately improved selectivity
compared to 3. Combination with a chloro substituent
into 8-chloro-6-fluoroquinoline 24 led to an increased
selectivity but a 5-fold loss in potency, a profile com-
parable to that of 8-cyanoquinoline 16. Further di- and
trisubstitution resulted in poorly active n-NOS inhibi-
tors (23, 25, and 26). Taken together, compounds dis-
playing reasonable potency and fair selectivity were 8-
chloro-, 8-bromo-, 8-nitro-, and 6-fluoroquinoline (12,
13, 15, 22); these seem to be clearly superior to arginine-
derived standards19 especially in terms of selectivity
against e-NOS.
In summary, novel, potent, and selective dihydroquino-
line-based n-NOS inhibitors have been identified, and
two synthetic routes have been described. The SAR
reported herein sets the stage for further medicinal chem-
istry optimization and for an extensive pharmacological
characterization.
10. The stereochemical assignment was proven by X-ray
crystallography on the thiolactam stage.
11. Hino, K.; Nagai, Y.; Uno, H. Chem. Pharm. Bull. 1988,
36, 2386.
12. Thomson, I.; Claussen, K.; Scheibye, S.; Lawesson, S.-O.
Org. Syn., Coll. VII 1990, 372.
13. A new application of a well-known reaction (cf. Gautier,
J.-A.; Miocque, M.; Farnoux, C. C. In The Chemistry of
Amidines and Imidates; Patai, S., Ed.; John Wiley & Sons:
London; 1975, p 283) is given in Papandreou, G.; Tong, M. K.;
Ganem, B. J. Am. Chem. Soc. 1993, 115, 11682. For the N-
hydroxyimino derivative see: Behringer, H.; Meier, H. Liebigs
Ann. Chem. 1957, 607, 67.
14. Blount, W. H.; Perkin, W. H., Jr.; Plant, S. G. P. J. Chem.
Soc. 1929 1975; 1983. Brettle, R.; Shibib, S. M. J. Chem. Soc.,
Perkin Trans. 1 1981, 2912.
Acknowledgements
The dedicated and skilfull technical assistence by Mrs.
Barbel Bennua-Skalmowski and Mr. Detlev Schmidt is
gratefully acknowledged.
References and Notes
1. Huang, Z.; Huang, P. L.; Panahian, N.; Dalkara, T.; Fish-
man, M. C.; Moskowitz, M. A. Science 1994, 265, 1883. Hol-
scher, C. Trends Neurosci. 1997, 20, 298. Eliasson, M. J. L.;
Huang, Z.; Ferrante, R. J.; Sasamata, M.; Molliver, M. E.;
Snyder, S. H.; Moskowitz, M. A. J. Neurosci. 1999, 19, 5910.