5578
Y. Langlois et al. / Tetrahedron Letters 49 (2008) 5576–5579
R
O
R
O
O
O
R
H
H
11a : R = Me
12a : R = Me
13
10a : R = H
10b : R = OMe
11b : R = Pr
12b : R = Et
Scheme 2.
Table 2
2458–2460. For the first example of organocatalyzed
Diels–Alder
cycloaddition, see: (c) Kelly, T. R.; Meghani, P.; Ekkundi, V. S. Tetrahedron
Lett. 1990, 31, 3381–3384.
Cycloadditions between dienophiles 10b–13 and cyclopentadiene
Entry Cat. (%) Dienophile Time (h) Yield (%) endo/exo ee (%) endo/exo
2. (a) Thayumanavan, R.; Dhevalapally, K.; Sakthivel, F.; Tanaka, F.; Barbas, C. F.,
III. Tetrahedron Lett. 2002, 43, 3817; (b) Braddock, D. C.; MacGilp, I. D.; Perry, B.
J. Adv. Synth. Catal. 2004, 346, 1117–1130; (c) Kim, K. H.; Lee, S.; Lee, D.-W.; Ko,
D.-H.; Ha, D.-C. Tetrahedron Lett. 2005, 46, 5991–5994; (d) Ishihara, K.; Nakano,
K. J. Am. Chem. Soc 2005, 127, 10504–10506; (e) Sakakura, A.; Suzuki, K.;
Nakano, K.; Ishihara, K. Org. Lett. 2006, 8, 2229–2232; (f) Bonini, B. F.; Capito,
E.; Comes-Franchini, M.; Fochi, M.; Ricci, A.; Zwanenburg, B. Tetrahedron:
Asymmetry 2006, 17, 3135–3143. Via microwave activation: (g) Mossé, S.;
Alexakis, A. Org. Lett. 2006, 8, 3577–3580; (h) Singh, R. P.; Bartelson, K.; Wang,
Y.; Heng, S.; Lu, X.; Deng, L. J. Am. Chem. Soc. 2008, 130, 2422–2433; Synthetic
applications: (i) Kinsman, A. C.; Ker, M. A. J. Am. Chem. Soc. 2003, 125, 14120–
14125; (j) Satoh, N.; Akiba, T.; Yokoshima, S.; Fukuyama, T. Angew. Chem., Int.
Ed. 2007, 46, 1–4. Organocatalyzed Diels–Alder cycloaddition theoretical
studies: (k) Gordillo, R.; Houk, K. N. J. Am. Chem. Soc. 2006, 128, 3543–3553.
3. Exo selective Diels–Alder cycloadditions: (a) Kano, T.; Tanaka, Y.; Maruoka, K.
Org. Lett. 2006, 13, 2687–2689; (b) Gotoh, H.; Hayashi, Y. Org. Lett. 2007, 9,
2859–2862; (c) Kano, T.; Tanaka, Y.; Maruoka, K. Chem. Asian J. 2007, 2, 1161–
1165.
1
2
3
4
5
6
7
8
9
10
11
12
13
14a
5b (10) 10b
9 (20) 10b
5b (10) 11a
9 (20) 11a
5b (10) 11b
24
36
24
28
20
24
20
3
24
20
20
5
68
10
88
72
95
67
57
75
56
90
96
28
62
73
42/58
54/46
68/32
47/53
74/26
70/30
60/40
97/3
95/5
94/6
95/5
93/7
—/78
—
40/—
—
26/42
0/0
—
0/0
0/0
—
0/0
8 (5)
9 (20)
11b
11b
5a (20) 12a
5b (5)
9 (20)
8 (5)
12b
12b
12b
5a (10) 13
5b (10) 13
5b (10) 10a
34/—
0/—
87/85
20
2
95/5
40/60
a
This experiment (Table 1, entry 3) has been added for comparison.
4. Inverse electron demand Diels–Alder cycloadditions: (a) Juhl, K.; Jorgensen, K.
A. Angew. Chem., Int. Ed. 2003, 42, 1498–1501; (b) Wabnitz, T. C.; Saaby, S.;
Jorgensen, K. Org. Biomol. Chem. 2004, 2, 828–834; (c) Wilson, R. M.; Jen, W. S.;
MacMillan, D. W. C. J. Am. Chem. Soc. 2005, 127, 11616–11617; (d) Hernandez-
Juan, F. A.; Cockfield, D. M.; Dixon, D. J. Tetrahedron Lett. 2007, 48, 1605–1608;
(e) Smith, C. D.; Batey, R. A. Tetrahedron 2007, 64, 652–663; (f) Xie, H.; Zu, L.;
Oueis, H. R.; Li, H.; Wang, J.; Wang, W. Org. Lett. 2008, 10, 1923–1926; (g) Zhao,
Y.; Wang, X.-J.; Liu, J. T. Synlett 2008, 1017–1020.
5. Hetero Diels–Alder cycloadditions: (a) Harriman, D. J.; Lambropoulos, A.;
Deslongchamps, G. Tetrahedron Lett. 2007, 48, 689–692; (b) Friberg, A.; Olsson,
C.; Ek, F.; Berg, U.; Fredj, T. Tetrahedron: Asymmetry 2007, 18, 885–891; (c)
Cafeo, G.; De Rosa, M.; Kohnke, F. H.; Neri, P.; Soriente, A.; Valenti, L.
Tetrahedron Lett. 2007, 49, 153–155; (d) Lu, L.-Q.; Xing, X.-. N.; Wang, X.-F.;
Ming, Z.-H.; Wang, H.-M.; Xiao, W.-J. Tetrahedron Lett. 2008, 49, 1631–1635; (e)
Aznar, F.; Garcia, A.-B.; Quinones, N.; Cabal, M.-P. Synthesis 2008, 479–484.
6. Intramolecular Diels–Alder cycloadditions: (a) Wilson, R. M.; Jen, W. S.;
MacMillan, D. W. C. J. Am. Chem. Soc. 2005, 127, 11616–11617; (b) Hong, B.-C.;
Tseng, H.-C.; Chen, S.-H. Tetrahedron 2007, 63, 2840–2850; (c) Gilmour, R.;
Prior, T.; Burton, J. W.; Holmes, A. B. Chem. Commun. 2007, 38, 3954–3956; (d)
Jacobs, W. C.; Christmann, M. Synlett 2008, 247–251.
reactive p-methoxy cinnamaldehyde 10b, catalyst 5b gave signifi-
cantly lower ee than with the unsusbstituted aldehyde 10a (entry
1). In the aliphatic series with catalyst 5b an increase of endo/exo
ratio was observed but the enantioselectity is dramatically reduced
for both adducts (entries 3 and 5). With the benzylidene catalyst 8,
racemic adducts were isolated (entries 6 and 11).
With a,b-unsaturated ketones as dienophiles, only the Mac Mil-
lan catalyst1b has given good stereoselectivity in organocatalyzed
Diels–Alder cycloadditions. It turned out that in our case, no
enantioselectivity was observed. In contrast to the observation of
Mac Millan,1b in our conditions, the use of hexenone 12b instead
of pentenone 12a19 did not improve the enantioselectivity (entries
8, 9, and 11). Nevertheless, high endo selectivity and often good
yields were obtained (entries 8 and 9–11). The case of cyclopente-
none 13 is not worthy, with catalyst 5a, the endo adduct was ob-
tained with 30% ee (entry 12) but with 5b, the same adduct was
found to be racemic.
7. Domino and cascade organocatalyzed
Diels–Alder cycloadditions: (a)
Ramachary, D. B.; Chowdari, N. S.; Barbas, C. F., III. Angew. Chem., Int. Ed.
2003, 42, 4233–4237; (b) Ramachary, D. B.; Anebouselvy, K.; Chowdari, N. S.;
Barbas, C. F., III. J. Org. Chem. 2004, 69, 5838–5849; (c) Enders, D.; Huttl, M.;
Runsink, J.; Raabe, G.; Wendt, B. Angew. Chem., Int. Ed. 2007, 46, 467–469; (d)
Pizzirani, D.; Roberti, M.; Recanatini, M. Tetrahedron Lett. 2007, 48, 7120–7124.
8. Solid supported catalyst: (a) Selkälä, S. A.; Tois, J.; Pihko, P. M.; Koskinen, A. M.
P. Adv. Synth. Catal. 2002, 344, 941–945. Recyclable fluorous catalyst: (b) Chu,
Q.; Zhang, W.; Curran, D. P. Tetrahedron Lett. 2006, 47, 9287–9290.
9. Organocatalyzed Diels–Alder cycloaddition reviews: (a) Diez, H.; Ley, S.
Chemtracts 2000, 13, 592–596; (b) Notz, W.; Tanaka, F.; Barbas, C. F., III. Acc.
Chem. Res. 2004, 37, 580–591. Multicomponent: (c) Guillena, G.; Ramon, D.;
Yus, M. Tetrahedron: Asymmetry 2007, 18, 693–700; N-heterocyclic carbenes:
(d) Enders, D.; Niemeier, O.; Henseler, A. Chem. Rev. 2007, 107, 5606–
5655.
10. (a) Kouklovsky, C.; Pouilhès, A.; Langlois, Y. J. Am. Chem. Soc. 1990, 112, 6672–
6679; (b) Dirat, O.; Kouklovsky, C.; Mauduit, M.; Langlois, Y. Pure Appl. Chem.
2000, 72, 1721–1737; For a review concerning the use of camphor derivatives
in asymmetric synthesis see: (c) Oppolzer, W. Pure Appl. Chem. 1990, 62, 1241–
1250.
11. (a) Lemay, M.; Ogilvie, W. W. Org. Lett. 2005, 7, 4141; (b) Lemay, M.; Ogilvie, W.
W. J. Org. Chem. 2006, 71, 4663; (c) Lemay, M.; Aumand, L.; Ogilvie, W. W. Adv.
Synth. Catal. 2007, 349, 441.
In summary, under our reaction conditions, camphor-derived
sulfonyl hydrazines, easily prepared from camphorsulfonic acid,
showed to be very active organocatalysts in Diels–Alder cycloaddi-
tions. Racemic adducts were easily prepared for comparison with
N,O-dimethyl hydroxylamine as catalyst. As often with other
organocatalysts, the endo/exo selectivity as well as the enantio-
selectivity are difficult to be rationalized. Endo and exo adducts
are probably obtained with different relative kinetic constants.
Further studies towards the synthesis of supported camphor-
derived organocatalysts are in current development.
Acknowledgments
We are grateful to Dr. R. Lett for very stimulating discussions
and Pr. Ogilvie for providing us experimental details concerning
his work.
12. (a) Cavill, J. L.; Peters, J.-W.; Tomkinson, N. C. O. Chem. Commun. 2003, 728–
729; (b) Cavill, J. L.; Eliott, R. L.; Evans, G.; Jones, I. L.; Platts, J. A.; Ruda, A. M.;
Tomkinson, N. C. O. Tetrahedron 2006, 62, 410–421.
13. He, H.; Pei, B.-J.; Chou, H.-H.; Tian, T.; Chan, W.-H.; Lee, A. W. M. Org. Lett. 2008,
10, 2421–2424.
References and notes
14. Cremlyn, R.; Burrell, K.; Fish, K.; Hough, I.; Mason, D. Phosphorous Sulfur 1982,
12, 197–204.
1. (a) Ahrendt, K. A.; Borths, C. J.; MacMillan, D. W. C. J. Am. Chem. Soc. 2000, 122,
4243–4244; (b) Northrup, A. B.; MacMillan, D. W. C. J. Am. Chem. Soc. 2002, 124,
15. Preparation of compound 4a: SOCl2 (3.64 mL, 25 mmol) was added dropwise to
crystalline (+)-camphorsulfonic acid 1 (4,64 g, 20 mmol) under argon. The