the â anomer of methyl ribofuranoside has served as a
substrate, thereby limiting the overall yield from D-ribose.3
Second, SnCl4 catalyzes intramolecular C-arylation when the
benzyl group lacks electron-withdrawing groups,6 apparently
precluding access to the potentially more versatile, non-
halogenated partially protected ribose derivative Id. Herein,
we address these limitations to allow efficient access to
methyl 3,5-di-O-benzyl-R-D-ribofuranoside (3f). We then use
3f to access 2′-C-â-methoxymethyl- and 2′-C-â-ethoxy-
methyluridines.
zylation of methyl ribofuranoside (Table 1). We found that
inclusion of tetrabutylammonium iodide (3% equiv) im-
proved yield significantly, possibly via in situ generation of
4-chlorobenzyl iodide, a more reactive benzylating agent than
4-chlorobenzyl chloride. Proceeding to the debenzylation
step, we first tested whether the R anomer could serve as a
substrate. We found that in the presence of SnCl4 (0-4 °C
for 36 h), R-2 gives 3c in 76% yield, similar to the yield
from â-2 (83%) (Scheme 2). Together with the improved
Beginning with the reaction conditions developed by O.
Martin3a (Table 1; entry 1) and P. Martin3b for the synthesis
Scheme 2
Table 1. Preparation of 2
molar ratio of
1:NaH:4-ClBnCl
time
(h)
yieldc
(%)
no.a
solvent
catalystb
1d
2
3
4
5
1:9.3:9.5
1:6.0:6.0
1:4.5:4.5
1:3.3:3.3
1:4.5:4.5
DMSO
DMF
DMF
DMF
DMF
-
+
+
+
-
15e
3
3
9
3
81
98
93
92
85
a All reactions were carried out under argon at room temperature. b n-
Bu4N+I- (3% equiv) was used as catalyst. c Combined isolated yield of
â-2 plus R-2. d Reference 3a; dimysl sodium was used as a base and prepared
in situ from sodium hydride and dry Me2SO at 60 °C for 45 min; methyl
D-ribofuranoside (â/R ≈ 10:1) was prepared according to Barker and
Fletcher (Barker, R.; Fletcher, H. G., Jr. J. Org. Chem. 1961, 26, 4605),
and only â-2 was isolated. e Overnight reaction.
synthesis of 2 (Table 1, no. 2), the ability to access 3c from
R-2 increases the overall yield of 3c from D-ribose compared
to the previous synthesis3a (70% vs 51%).
We used our optimized conditions7 to synthesize a variety
of methyl 3,5-di-O-arylmethyl-R-D-ribofuranosides (3) (Table
2). We first prepared methyl 2,3,5-tri-O-haloarylmethyl-R/
of methyl 2,3,5-tri-O-(4-chlorobenzyl)-â-D-ribofuranoside (2)
and methyl 2,3,5-tri-O-(2,4-dichlorobenzyl)-â-D-ribofurano-
side, respectively, we optimized conditions for 4-chloroben-
Table 2. Preparation of 3a-f
(3) (a) Martin, O. R.; Kurz, K. G.; Rao, S. P. J. Org. Chem. 1987, 52,
2922. (b) Martin, P. HelV. Chim. Acta 1995, 78, 486.
(4) (a) Eldrup, A. B.; Allerson, C. R.; Bennett, C. F.; Bera, S.; Bhat, B.;
Bhat, N.; Bosserman, M. R.; Brooks, J.; Burlein, C.; Carroll, S. S.; Cook,
P. D.; Getty, K. L.; MacCoss, M.; McMasters, D. R.; Olson, D. B.; Prakash,
T. P.; Prhavc, M.; Song, Q.; Tomassini, J. E.; Xia, J. J. Med. Chem. 2004,
47, 2283. (b) Franchetti, P.; Cappellacci, L.; Marchetti, S.; Trincavelli, L.;
Martin, C.; Mazzoni, M. R.; Lucacchini, A.; Grifantini, M. J. Med. Chem.
1998, 41, 1708. (c) Tang, X.-Q.; Liao, X.; Piccirilli, J. A. J. Org. Chem.
1999, 64, 747. (d) Li, N.-S.; Piccirilli, J. A. J. Org. Chem. 2006, 71, 4018.
(e) Ding, Y.; Girardet, J.-L.; Hong, Z.; Lai, V. C. H.; An, H.; Koh, Y.;
Shaw, S. Z.; Zhong, W. Bioorg. Med. Chem. Lett. 2005, 15, 709. (f) Ye,
J.-D.; Liao, X.; Piccirilli, J. A. J. Org. Chem. 2005, 70, 7902. (g) Li, N.-S.;
Tang, X.-Q.; Piccirilli, J. A. Org. Lett. 2001, 3, 1025. (h) Babu, B. R.;
Keinicke, L.; Petersen, M.; Nielsen, C.; Wengel, J. Org. Biomol. Chem.
2003, 1, 3514. (i) Li, N.-S.; Piccirilli, J. A. J. Org. Chem. 2003, 68, 6799.
(j) Eldrup, A. B.; Prhavc, M.; Brooks, J.; Bhat, B.; Prakash, T. P.; Song,
Q.; Bera, S.; Bhat, N.; Dande, P.; Cook, P. D.; Bennett, C. F.; Carroll, S.
S.; Ball, R. G.; Bosserman, M.; Burlein, C.; Colwell, L. F.; Fay, J. F.; Flores,
O. A.; Getty, K.; LaFemina, R. L.; Leone, J.; MacCoss, M.; McMasters,
D. R.; Tomassini, J. E.; Langen, D. V.; Wolanski, B.; Olson, D. B. J. Med.
Chem. 2004, 47, 5284. (k) Martin, P. HelV. Chim. Acta 1996, 79, 1930. (l)
Kawasaki, A. M.; Casper, M. D.; Prakash, T. P.; Manalili, S.; Sasmor, H.;
Manoharan, M.; Cook, P. D. Tetrahedron Lett. 1999, 40, 661. (m) Peng,
C. G.; Damha, M. J. Nucleic Acids Res. 2005, 33, 7019. (n) Schmit, C.
Synlett 1994, 238. (o) Schmit, C. Synlett 1994, 241. (p) Jeannot, F.; Gosselin,
G.; Mathe, C. Org. Biomol. Chem. 2003, 1, 2096. (q) Li, N.-S.; Piccirilli,
J. A. J. Org. Chem. 2004, 69, 4751. (r) Li, N.-S.; Piccirilli, J. A. Synthesis
2005, 2865.
no.
product
Ar
conditions iia
yield (%)b
1
2
3
4
5
6
7
3a
3b
3c
3d
3e
3f
2-ClC6H4
3-ClC6H4
4-ClC6H4
4-BrC6H4
2,4-Cl2C6H3
Ph
0 °C to rt, 22 h
0 °C to rt, 23 h
0 °C to rt, 28 h
0 °C to rt, 24 h
0 °C to rt, 24 h
0 °C to rt, 18 h
0-4 °C, 48 h
82
75
75
75
75
61
72
3f
Ph
a Reaction conditions ii are for the SnCl4-mediated reaction. b Isolated
yield based on methyl ribofuranoside (1).
â-D-ribofuranosides from 1 and the corresponding arylmethyl
chlorides. After workup, the crude mixtures were treated with
SnCl4 (0 °C to room temperature over 24 h) to give 3a-e in
yields ranging from 75% to 82%.
(5) We focused on Ib-d (protected with benzyl ethers) as synthons for
2′-C-â-alkoxymethyluridines because the benzoate esters of IIa react with
Grignard reagents used to install the alkoxymethyl branch at C-2.
(6) (a) Martin, O. R. Tetrahedron Lett. 1985, 26, 2055. (b) Martin, O.
R. Carbohydr. Res. 1987, 171, 211. (c) Martin, O. R.; Mahnken, R. E. J.
Chem. Soc., Chem. Commun. 1986, 497.
(7) Perbenzylation reactions were carried out with 1:NaH:arylmethyl
chloride:n-Bu4N+I- (1:4.5:3.0:0.03) in DMF at room temperature for 3 h.
Our procedure eliminates the need to separate the anomers of 2,3,5-tri-O-
halobenzyl-R/â-D-ribofuranosides.
3010
Org. Lett., Vol. 9, No. 16, 2007