is well documented in the literature, to the best of our knowledge
there are no examples reported about conjugate addition of
amines to R,ꢀ-unsaturated imines. Moreover, the presence of a
phosphonate group in the imine increases the synthetic interest
of these substrates due to the applications of functionalized
aminophosphonates in organic and medicinal chemistry.7-10
We have been involved in the chemistry of azabutadienes,11
and we recently reported an efficient synthesis of R,ꢀ-unsatur-
ated imines derived from R-aminoesters12a and R-amino-
phosphonates.12b These 1-azadienes have shown very assorted
reactivity, and they have proved to be very useful intermediates
for the synthesis of several heterocycles13 as well as for the
preparation of R-amino acid or R-aminophosphonic acid deriva-
tives,12 in some cases enantioselectively.14 Following our interest
in the chemistry of R-aminophosphonates15 and 1-azabuta-
dienes11,12 and specifically in the reactivity of R,ꢀ-unsaturated
imines derived from R-aminophosphonates, we report here the
first example of a conjugate addition of amine nucleophiles to
the ꢀ-carbon vinylogously attached to an imine group.
Conjugate Addition of Amines to an
r,ꢀ-Unsaturated Imine Derived from
r-Aminophosphonate. Synthesis of
γ-Amino-r-dehydroaminophosphonates
Javier Vicario, Domitila Aparicio, and Francisco Palacios*
Departamento de Qu´ımica Orga´nica I, Facultad de
Farmacia, UniVersidad del Pa´ıs Vasco,
Apartado 450, 01080 Vitoria, Spain
ReceiVed October 2, 2008
Conjugate addition of ammonia 2a (R1 ) R2 ) H) to R,ꢀ-
unsaturated imine 1 derived from R-aminophosphonate does not
require any additional activation and can be performed in CH2Cl2
under mild conditions (procedure A, see the Experimental
Section), affording exclusively the E isomer of γ-amino-R-
dehydroaminophosphonate 3a (R1 ) R2 ) H), in a stereose-
Aza-Michael reaction of ammonia, aliphatic, aromatic and
optically active amines to an R,ꢀ-unsaturated imine derived
from R-aminophosphonate affords R-dehydroaminophos-
phonates with a γ-stereogenic center bearing an amino group.
Resulting γ-amino R-dehydroaminophosphonates can be used
for the preparation of phosphorylated pyrimidine derivatives.
(6) For some recent examples of organocatalytic aza-Michael reactions, see:
(a) Chen, Y. K.; Yoshida, M.; MacMillan, D. W. J. Am. Chem. Soc. 2006, 128,
9328. (b) Dine´r, P.; Nielsen, M.; Marigo, M.; Jørgensen, K. A. Angew. Chem.,
Int. Ed. 2007, 46, 1983. (c) Liu, B. K.; Wu, Q.; Qian, X. Q.; Lv, D. S.; Lin,
X. F. Synthesis 2007, 2653. (d) Han, X. Tetrahedron Lett. 2007, 48, 2845. (e)
Yeom, C.-E.; Kim, M. J.; Kim, B. M. Tetrahedron 2007, 63, 904. (f) Uria, U.;
Vicario, J. L.; Badia, D.; Carrillo, L. Chem. Commun. 2007, 2509.
(7) For an excellent book, see: Kukhar, V. P., Hadson, H. R., Eds. In
Aminophosphonic and Aminophosphinic Acids. Chemistry and Biological ActiVity;
J. Wiley: Chichester, 2000.
(8) For reviews on R-aminophosphonates, see: (a) Kafarski, P.; Lejczak, B.
Curr. Med. Chem: Anti-Cancer Agents. 2001, 1, 301. (b) Gambecka, J.; Kafarski,
P. Mini-ReV. Med. Chem. 2001, 1, 133.
(9) For reviews on ꢀ-aminophosphonates, see: (a) Palacios, F.; Alonso, C.;
de los Santos, J. M. Chem. ReV. 2005, 105, 899. (b) Palacios, F.; Alonso, C.; de
los Santos, J. M. In EnantioselectiVe Synthesis of ꢀ-Amino Acids, 2nd ed.; Juaristi,
E., Soloshonok, V. A., Eds.; Wiley: New York, 2005; p 277.
(10) For some recent contributions on γ-aminophosphonates, see: (a)
Fernandez, M. C.; Diaz, A.; Guillin, J. J.; Blanco, O.; Ruiz, M.; Ojea, V. J.
Org. Chem. 2006, 71, 6958. (b) Chowdhury, S.; Muni, N. J.; Greenwood, N. P.;
Pepperberg, D. R.; Standaert, R. F. Bioorg. Med. Chem Lett. 2007, 17, 3745.
(c) Hakogi, T.; Monden, Y.; Taichi, M.; Iwama, S.; Fujii, S.; Ikeda, K.;
Katsumura, S. J. Org. Chem. 2002, 67, 4839.
(11) (a) Palacios, F.; Aparicio, D.; Garc´ıa, J.; Rodr´ıguez, E.; Ferna´ndez-
Acebes, A. Tetrahedron 2001, 57, 3131. (b) Palacios, F.; Ochoa de Retana, A. M.;
Pascual, S.; Oyarzabal, J. Org. Lett. 2002, 4, 769. (c) Palacios, F.; Aparicio, D.;
Vicario, J. Eur. J. Org. Chem. 2002, 4131. (d) Palacios, F.; Herra´n, E.; Rubiales,
G.; Ezpeleta, J. M. J. Org. Chem. 2002, 67, 2131. (e) Palacios, F.; Ochoa de
Retana, A. M.; Pascual, S.; Oyarzabal, J. J. Org. Chem. 2004, 69, 8767.
(12) (a) Palacios, F.; Vicario, J.; Aparicio, D. J. Org. Chem. 2006, 71, 7690.
(b) Palacios, F.; Vicario, J.; Maliszewska, A.; Aparicio, D. J. Org. Chem. 2007,
72, 2682.
(13) (a) Palacios, F.; Vicario, J.; Aparicio, D. Tetrahedron Lett. 2007, 48,
6747. (b) Palacios, F.; Vicario, J.; Aparicio, D. Eur. J. Org. Chem. 2006, 2843.
(14) (a) Palacios, F.; Vicario, J. Org. Lett. 2006, 8, 5405. (b) Palacios, F.;
Vicario, J. Synthesis 2007, 3923.
(15) (a) de los Santos, J. M.; Ignacio, R.; Aparicio, D.; Palacios, F. J. Org.
Chem. 2007, 72, 5202. (b) Palacios, F.; Ochoa de Retana, A. M.; Alonso, J. M.
J. Org. Chem. 2005, 70, 8895. (c) Palacios, F.; Aparicio, D.; Ochoa de Retana,
A. M.; de los Santos, J. M.; Gil, J. I.; Lopez de Munain, R. Tetrahedron:
Asymmetry. 2003, 14, 689. (d) Palacios, F.; Aparicio, D.; Ochoa de Retana, A. M.;
de los Santos, J. M.; Gil, J. I.; Lopez de Munain, R. J. Org. Chem. 2002, 67,
7283.
The aza-Michael reaction is one of the most powerful
reactions in organic chemistry for the formation of C-N bonds.1
Its simplicity makes it the most appropriate alternative for the
preparation of functionalized γ-amino compounds. Conjugate
addition of nitrogen nucleophiles to Michael acceptors can
sometimes proceed without catalyst,2 but, very often, deproto-
nation of the amine,3 or activation of the conjugated system by
the presence of Bro¨nsted4 or Lewis5 acids or organocatalysts6
is required, especially in the case of the addition of weakly
nucleophilic aromatic amines. Despite the fact that conjugate
addition of amines to R,ꢀ-unsaturated carbonylic compounds
(1) (a) For reviews, see: Perlmutter, P. Conjugate Addition Reactions in
Organic Synthesis; Pergamon: Oxford, 1992. (b) Xu, L.-W.; Xia, C.-G. Eur. J.
Org. Chem. 2005, 633. (c) Vicario, J. L.; Bad´ıa, D.; Carrillo, L.; Etxebarria, J.;
Reyes, E.; Ruiz, N. Org. Prep. Proc. Int. 2005, 37, 513.
(2) Ranu, B. C.; Banerjee, S. Tetrahedron Lett. 2007, 48, 141. (b) Kumar,
R.; Chaudhary, P.; Nimesh, S.; Chandra, R. Green Chem. 2006, 356.
(3) (a) Some recent examples of aza-Michael using lithium amides: Sakai,
T.; Doi, H.; Kawamoto, Y.; Yamada, K.-I.; Tomioka, K. Tetrahedron Lett. 2004,
45, 926. (b) Etxebarria, J.; Vicario, J. L.; Badia, D.; Carrillo, L.; Ruiz, N. J.
Org. Chem. 2005, 70, 8790. (c) Davies, S. G.; Garner, A. C.; Goddard, E. C.;
Kruchinin, D.; Roberts, P. M.; Rodriguez-Solla, H.; Smith, A. D. Chem. Commun.
2006, 2664. (d) Sakai, T.; Kawamoto, Y.; Tomioka, K. J. Org. Chem. 2006, 71,
4706.
(4) (a) Um, I.-H.; Lee, E.-J.; Min, J.-S. Tetrahedron 2001, 57, 9585. (b)
Wabnitz, T. C.; Yu, J.-Q.; Spencer, J. B. Chem. Eur. J. 2004, 10, 484.
(5) For some recent examples of Lewis acid catalyzed aza-Michael reactions,
see: (a) Kobayashi, S.; Kakumoto, K.; Sugiura, M. Org. Lett. 2002, 4, 1319. (b)
Varala, R.; Alam, M. M.; Adapai, S. R. Synlett 2003, 720. (c) Azizi, N.; Saidi,
R. M. Tetrahedron 2004, 60, 383. (d) Narsaiah, A. V. Lett. Org. Chem. 2007,
4, 462. (e) Bhanushali, M. J.; Nandurkar, N. S.; Jagtap, S. R.; Bhanage, B. M.
Catal. Commun. 2008, 9, 1189.
452 J. Org. Chem. 2009, 74, 452–455
10.1021/jo8022022 CCC: $40.75 2009 American Chemical Society
Published on Web 11/19/2008