6840
H. Chapuis et al. / Tetrahedron Letters 49 (2008) 6838–6840
investigated (Table 1): u11 (LON-2), u13 (LON-3), u19 (LON-4), or
u11/u19 (LON-5).
Acknowledgments
To evaluate the effect of LONs on miR-122/anti-miR-122
duplexes, hybridization experiments were performed. Melting
temperatures (Tm) of the duplexes are listed in Table 1. For com-
parative analysis, Tm of anti-miR-122 lacking the hydrophobic part
was also determined. Hybridization of the 20-conjugated oligonu-
cleotides to their RNA complements, miR-122, reveals, firstly, that
large lipid modifications are well tolerated at the 20 position de-
spite the amido linker. Indeed, substitutions involving nitrogen,
like 20-amino, 20-carbamate, or 20-amido push the equilibrium of
the ribose from the 30-endo conformation toward a more DNA-like
20-endo (S-type) conformation.25 Depending on the structural con-
text, these shifts in sugar pucker can destabilize modified helices
compared to 20O-modified ONs, which favor the 30-endo (N-type)
conformation that is characteristic of RNA, leading to stabilizing
effects on RNA/RNA and DNA/RNA duplexes.
This work was supported by the Army Research Office, which
is greatly acknowledged. The authors thank N. Pierre for the
synthesis of the ONs.
Supplementary data
Supplementary data associated with this article can be found, in
References and notes
1. Gissot, A.; Camplo, M.; Grinstaff, M. W.; Barthelemy, P. Org. Biomol. Chem. 2008,
6, 1324–1333.
2. Boutorine, A. S.; Kostina, E. V. Biochimie 1993, 75, 35–41.
3. Boutorine, A. S.; Gus’kova, L. V.; Ivanova, E. M.; Kobetz, N. D.; Zarytova, V. F.;
Ryte, A. S.; Yurchenko, L. V.; Vlassov, V. V. FEBS Lett. 1989, 254, 129–132.
4. Kim, S. J.; Bang, E. K.; Kwon, H. J.; Shim, J. S.; Kim, B. H. ChemBioChem. 2004, 5,
1517–1522.
5. Godeau, G.; Staedel, C.; Barthélémy, P. J. Med. Chem. 2008, 14, 4374–4376.
6. Krützfeldt, J.; Rajewsky, N.; Braich, R.; Rajeev, K. G.; Tuschl, T.; Manoharan, M.;
Stoffel, M. Nature 2005, 438, 685–689.
Secondly, it is noteworthy that, depending on its location, a
20-lipid modification incorporated within the oligonucleotide
sequence can be envisioned without destabilizing the anti-miR/
miR duplex.
7. O’Driscoll, L. Anticancer Res. 2006, 26, 4271–4278.
Interestingly, LON-2 possessing a lipid modified u11 has a
similar Tm as the unconjugated control indicating that the lipid
modification on this position does not destabilize the duplex. This
observation is in agreement with antagomir-122 mismatch
studies, which revealed that a single mismatch at position 11 did
not affect the inhibitory effect on miR-122.9 Accordingly, it is not
surprising that u11 lipidic modification does not affect the Tm. In
contrast, u13 modified oligonucleotide LON-3 decreases the anti-
miR122/miR-122 duplex stability, confirming the fact that
although anti-miR can exhibit high sequence specificity, discrimi-
nation at the single nucleotide level is position-dependent.
It is also interesting to note that while u11 and u19 20-modified
oligonucleotides (LON-2 and LON-4), taken separately, do not
affect the stability of anti-miR-122/miR-122 duplex, oligonucleo-
tide LON-5 featuring simultaneous lipid-modified u19 and u11 leads
to a destabilization of 6 °C. While we do not have any structural
data, one possible explanation is that the hydrophobic parts
attracted themselves introducing a kink in the helix, which gener-
ates steric distortions.
In conclusion, we have synthesized the first example of an
antagomir strand featuring a fatty acid in place of a cholesterol
moiety. Interestingly, this lipid modification is incorporated inter-
nally in the oligonucleotide sequence and not at the 30-end (up to
two modifications within the same strand). Lipid conjugation of
the 20 position was realized via a Staudinger–Vilarrasa reaction.
This straightforward procedure was used instead of a standard
coupling procedure as a key-step to functionalize our building
block with the fatty acid. Melting temperature (Tm) experiments
revealed that the stability of the duplexes depends on the lipid
position and the number of lipid moieties inserted within the
oligonucleotide sequence. For the targeted miRNA (miR-122) lipid
modifications of positions 11 and 19 do not destabilize the
duplexes, whereas the concomitant lipid conjugation on the same
position leads to decreases of 6 °C of the Tm. Such materials
being likely to be of interest for multiple applications ranging
from chemistry to medicine, biological assays are currently in
progress.
8. Shen, J. K.; Yang, X.; Xie, B.; Chen, Y.; Swaim, M.; Hackett, S. F.; Campochiaro, P.
A. Mol. Ther. 2008, 16, 1208–1216.
9. Krützfeld, J.; Kuwajima, S.; Braich, R.; Rajeev, G. K.; Pena, J.; Manoharan, M.;
Stoffel, M. Nucleic Acids Res. 2007, 35, 2885–2892.
10. Esau, C.; Davis, S.; Murray, F. S.; Yu, X. Y.; Pandey, K. S.; Pear, M.; Watts, L.;
Booten, S. L.; Graham, M.; McKay, R.; Subramanian, A.; Propp, S.; Lollo, B. A.;
Freier, S.; Bennett, C. F.; Bhanot, S.; Monia, B. P. Cell Metab. 2006, 3, 87–98.
11. Manoharan, M.; Tivel, K. L.; Cook, P. D. Tetrahedron Lett. 1995, 36, 3651–3654.
12. Tomkins, J. M.; Barnes, K. J.; Blacker, A. J.; Watkins, W. J.; Abell, C. Tetrahedron
Lett. 1997, 38, 691–694.
13. Letsinger, R. L.; Zhang, G.; Sun, D. K.; Ikeuchi, T.; Sarin, P. S. Proc. Natl. Acad. Sci.
U.S.A. 1989, 86, 6553–6556.
14. Shea, R. G.; Marsters, J. C.; Bischofberger, N. Nucleic Acids Res. 1990, 18, 3777.
15. Alemdaroglu, F. E.; Ding, K.; Berger, R.; Herrmann, A. Angew. Chem., Int. Ed.
2006, 45, 4206–4210.
16. Kurz, A.; Bunge, A.; Windeck, A.-K.; Rost, M.; Flasche, W.; Arbuzova, A.;
Strohbach, D.; Müller, S.; Liebscher, J.; Huster, D.; Herrmann, A. Angew. Chem.,
Int. Ed. 2006, 45, 4440–4444.
17. Bunge, A.; Kurz, A.; Windeck, A.-K.; Korte, T.; Flasche, W.; Liebscher, J.;
Herrmann, A.; Huster, D. Langmuir 2007, 23, 4455–4464.
18. Morvan, F.; Porumb, H.; Degols, G.; Lefebvre, I.; Pompon, A.; Sproat, B. S.;
Rayner, B.; Malvy, C.; Lebleu, B.; Imbach, J. L. J Med. Chem. 1993, 36, 280–287.
19. Wagner, E.; Oberhauser, B.; Holzner, A.; Brunar, H.; Issakides, G.; Schaffner, G.;
Cotton, M.; Knollmüller, M.; Noe, C. R. Nucleic Acids Res. 1991, 19, 5965–5971.
20. Prakash, T. P.; Kawasaki, A. M.; Wancewicz, E. V.; Shen, L.; Monia, B. P.; Ross, B.
S.; Bhar, B.; Manoharan, M. J. Med. Chem. 2008, 51, 2766–2776.
21. Bobkov, G. V.; Mikhailov, S. N.; Aerschot, A. V.; Herdewijn, P. Tetrahedron 2008,
64, 6238–6251.
22. Odadzic, D.; Bramsen, J. B.; Smicius, R.; Bus, C.; Kjems, J.; Engels, J. W. Bioorg.
Med. Chem. 2007, 16, 518–529.
23. Freier, S. M.; Altmann, K. H. Nucleic Acids Res. 1997, 25, 4429–4443.
24. Prhavc, M.; Lesnik, E. A.; Mohan, V.; Manoharan, M. Tetrahedron Lett. 2001, 42,
8777–8780.
25. Pham, J. W.; Radhakrishnan, I.; Sontheimer, E. J. Nucleic Acids Res. 2004, 32,
3446–3455.
26. Hendrix, C.; Devreese, B.; Rozenski, J.; van Aerschot, A.; De Bruyn, A.; Van
Beeumen, J.; Herdewijn, P. Nucleic Acids Res. 1995, 23, 51–57.
27. McGee, D. P.; Vaughn-Settle, A.; Vargeese, C.; Zhai, Y. J. Org. Chem. 1996, 61,
781–785.
28. Chapuis, H.; Strazewski, P. Tetrahedron 2006, 62, 12108–12115.
29. Wnuk, S. F.; Chowdhury, S. F.; Garcia, P. I., Jr.; Robins, M. J. J. Org. Chem. 2002,
67, 1816–1819.
30. Verheyde, J. P.; Wagner, D.; Moffatt, J. G. J. Org. Chem. 1971, 36, 250–254.
31. Charafeddine, A.; Dayoub, W.; Chapuis, H.; Strazewski, P. Chem. Eur. J. 2007, 13,
5566–5584.
32. Shalev, D. E.; Chiacchiera, S. M.; Radkowsky, E. M.; Kosower, J. J. Org. Chem.
1996, 61, 1689–1701.