ACS Medicinal Chemistry Letters
Letter
(5) Kolandaivelu, K.; Bhatt, D. L. Overcoming resistance to
antiplatelet therapy: targeting the issue of nonadherence. Nat. Rev.
Cardiol. 2010, 7, 461−467.
previous biotransformation studies and the therapeutic analyses
of CPG, medicinal chemistry approaches were carefully
designed, and a series of deuterated analogues of CPG were
prepared. The in vitro and in vivo studies have confirmed that
the subtle structural modification of selective piperidine
deuteration yields the targeted metabolic shunt and leads to
the desired bioactivation potentiation. These deuterated
analogues hold a promise for overcoming the prominent
clinical drawbacks of CPG. The research presented here is part
of a continuous effort to use CPG as a tool compound to build
a methodology of “utilizing the human body to generate its
own medicine”. The discovery of deuterated CPGs might not
only lead to superior antithrombotic medications but, more
importantly, could also serve as an example for future chemical
therapeutics.
(6) Dansette, P. M.; Rosi, J.; Bertho, G.; Mansuy, D. Cytochromes
P450 catalyze both steps of the major pathway of clopidogrel
bioactivation, whereas paraoxonase catalyzes the formation of a minor
thiol metabolite isomer. Chem. Res. Toxicol. 2012, 25, 348−356.
(7) Gong, I. Y.; Crown, N.; Suen, C. M.; Schwarz, U. I.; Dresser, G.
K.; Knauer, M. J.; Sugiyama, D.; Degorter, M. K.; Woolsey, S.; Tirona,
R. G.; Kim, R. B. Clarifying the importance of CYP2C19 and PON1 in
the mechanism of clopidogrel bioactivation and in vivo antiplatelet
response. Eur. Heart. J. 2012, 33, 2856−2864.
(8) Zhu, Y.; Zhou, J. Identification of the significant involvement and
mechanistic role of CYP3A4/5 in clopidogrel bioactivation. ACS Med.
Chem. Lett. 2012, 3, 844−849.
(9) Kazui, M.; Nishiya, Y.; Ishizuka, T.; Hagihara, K.; Farid, N. A.;
Okazaki, O.; Ikeda, T.; Kurihara, A. Identification of the human
cytochrome P450 enzymes involved in the two oxidative steps in the
bioactivation of clopidogrel to its pharmacologically active metabolite.
Drug Metab. Dispos. 2010, 38, 92−99.
ASSOCIATED CONTENT
■
S
* Supporting Information
(10) Hagihara, K.; Kazui, M.; Kurihara, A.; Yoshiike, M.; Honda, K.;
Okazaki, O.; Farid, N. A.; Ikeda, T. A possible mechanism for the
differences in efficiency and variability of active metabolite formation
from thienopyridine antiplatelet gents, prasugrel and clopidogrel. Drug
Metab. Dispos. 2009, 37, 2145−2152.
Experimental procedures of CPG synthesis, in vitro bio-
activation and in vivo pharmacological studies, and spectral and
chromatographic data. This material is available free of charge
(11) Caplain, H.; Donat, F.; Gaud, C.; Necciari, J. Pharmacokinetics
of clopidogrel. Semin. Thromb. Hemostasis 1999, 25 (Suppl 2), 25−28.
(12) Zhu, Y.; Zhou, J. In Vitro Biotransformation Studies of 2-Oxo-
clopidogrel: Multiple Thiolactone Ring Opening Pathways Further
Attenuate Prodrug Activation. Chem. Res. Toxicol. 2013, 26, 179−190.
(13) Savi, P.; Pereillo, J. M.; Uzabiaga, M. F.; Combalbert, J.; Picard,
C.; Maffrand, J. P.; Pascal, M.; Herbert, J. M. Identification and
biological activity of the active metabolite of clopidogrel. Thromb.
Haemostasis 2000, 84, 891−896.
AUTHOR INFORMATION
■
Corresponding Author
*Phone:+86-10-6275-7536, 1-847-530-7238. Fax: +86-10-
Author Contributions
Y.Z. made the initial discovery, designed and synthesized the
deuterated CPGs, conducted the in vitro studies, analyzed the
results, and wrote the manuscript. J.Z. conducted part of the
compound characterization, including HRMS and enantiomeric
analyses. B.J. conducted in vivo studies of the CPGs.
(14) Sibbing, D.; Steinhubl, S. R.; Schulz, S.; Schomig, A.; Kastrati, A.
̈
Platelet aggregation and its association with stent thrombosis and
bleeding in clopidogrel-treated patients: initial evidence of a
therapeutic window. J. Am. Coll. Cardiol. 2010, 56, 317−318.
(15) Bhatt, D. L.; Fox, K. A. A.; Hacke, W.; Berger, P. B.; Black, H.
R.; Boden, W. E.; Cacoub, P.; Cohen, E. A.; Creager, M. A.; Easton, J.
D.; Flather, M. D.; Haffner, S. M.; Hamm, C. W.; Hankey, G. J.;
Johnston, S. C.; Mak, K.; Mas, J.; Montalescot, G.; Pearson, T. A.;
Steg, P. G.; Steinhubl, S. R.; Weber, M. A.; Brennan, D. M.; Fabry-
Ribaudo, L.; Booth, J.; Topol, E. J. Clopidogrel and aspirin versus
aspirin alone for the prevention of atherothrombotic events. N. Engl. J.
Med. 2006, 354, 1706−1717.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We thank Dr. Richard B. Silverman (Northwestern University)
and Dr. Hongyu Zhao (Abbott Laboratories) for critical
reading and careful revision of the manuscript.
(16) Zhang, H.; Amunugama, H.; Ney, S.; Cooper, N.; Hollenberg, P.
F. Mechanism-based inactivation of human cytochrome P450 2B6 by
clopidogrel: involvement of both covalent modification of cysteinyl
residue 475 and loss of heme. Mol. Pharmacol. 2011, 80, 839−847.
(17) Chen, B. L.; Chen, Y.; Tu, J. H.; Li, Y. L.; Zhang, W.; Li, Q.;
Fan, L.; Tan, Z. R.; Hu, D. L.; Wang, D.; Wang, L. S.; Ouyang, D. S.;
Zhou, H. H. Clopidogrel inhibits CYP2C19-dependent hydroxylation
of omeprazole related to CYP2C19 genetic polymorphisms. J. Clin.
Pharmacol. 2009, 49, 574−581.
ABBREVIATIONS
■
CPG, clopidogrel; CYP, cytochrome P450; PON-1, para-
oxonase-1; HLM, human liver microsomes; RLM, rat liver
microsomes; ADP, adenosine diphosphate
REFERENCES
■
(1) Savi, P.; Herbert, J. M. Clopidogrel and ticlopidine: P2Y12
adenosine diphosphate receptor antagonists for the prevention of
atherothrombosis. Semin. Thromb. Hemostasis 2005, 31, 174−183.
(2) Pereillo, J. M.; Maftouh, M.; Andrieu, A.; Uzabiaga, M. F.; Fedeli,
O.; Savi, P.; Pascal, M.; Herbert, J. M.; Maffrand, J. P.; Picard, C.
Structure and stereochemistry of the active metabolite of clopidogrel.
Drug Metab. Dispos. 2002, 30, 1288−1295.
(3) Dansette, P. M.; Libraire, J.; Bertho, G.; Mansuy, D. Metabolic
oxidative cleavage of thioesters: evidence for the formation of sulfenic
acid intermediates in the bioactivation of the antithrombotic prodrugs
ticlopidine and clopidogrel. Chem. Res. Toxicol. 2009, 22, 369−373.
(4) Gurbel, P. A.; Bliden, K .P.; Hiatt, B. L.; O’Connor, C. M.
Clopidogrel for coronary stenting: response variability, drug resistance,
and the effect of pretreatment platelet reactivity. Circulation 2003, 107,
2908−2913.
(18) Alla, V. A.; Vyakaranam, K. A.; Sirigiri, A. K.; Bodapati, S. R.;
Billa, R. R.; Gudibandi, S. R.; Alla, R. Process for Preparation of
Clopidogrel Bisulphate Form-1. US 2007/0191609 A1, 2007.
(19) Shan, J.; Zhang, B.; Zhu, Y.; Jiao, B.; Zheng, W.; Qi, X.; Gong,
Y.; Yuan, Y.; Lv, F.; Sun, H. Overcoming clopidogrel resistance:
discovery of vicagrel as a highly potent and orally bioavailable
antiplatelet agent. J. Med. Chem. 2012, 55, 3342−3352.
(20) Born, G. V. Aggregation of blood platelets by adenosine
diphosphate and its reversal. Nature 1962, 194, 927−929.
(21) Kim, J. Y. Strategy for the treatment of clopidogrel low
responsiveness in diabetes mellitus and stent implantation. Korean
Circ. J. 2009, 39, 459−461.
(22) Singh, J.; Petter, R. C.; Baillie, T. A.; Whitty, A. The resurgence
of covalent drugs. Nat. Rev. Drug Discovery 2011, 10, 307−317.
D
dx.doi.org/10.1021/ml300460t | ACS Med. Chem. Lett. XXXX, XXX, XXX−XXX