Organic Letters
Letter
thus suppress the key C−C bond-forming Friedel−Crafts
alkylation. Meanwhile, the reaction between 1 and enantiomer-
enriched lactone samples (61, 79% ee and 2, 90% ee)18 under
standard conditions generated product mixtures with much
lower enantiomer excess. This result indicated that the lactone
was likely activated into a fully racemizing carbocation
transition state, excluding the possibility of SN2 pathway
(Scheme 6). The real pathway could be either a fully
21673141), “1000 Talents Plan for Young Professionals” start-
up funding, and ShanghaiTech University start-up funding. We
thank Analytical Instrumentation Center of ShanghaiTech for
facilities and services of characterization of compounds.
REFERENCES
■
477.
(1) Brunmark, A.; Cadenas, E. Free Radical Biol. Med. 1989, 7, 435−
(2) Dassano, A.; Loretelli, C.; Fiorina, P. Pharmacol. Res. 2019, 139,
469−470.
(3) Shiraishi, M.; Kato, K.; Terao, S.; Ashida, Y.; Terashita, Z.; Kito,
G. J. Med. Chem. 1989, 32, 2214−2221.
Scheme 6. Mechanistic Studies
(4) (a) Min, J.-H.; Lee, J.-S.; Yang, J.-D.; Koo, S. J. Org. Chem. 2003,
68, 7925−7927. (b) Lipshutz, B. H.; Lower, A.; Berl, V.; Schein, K.;
Wetterich, F. Org. Lett. 2005, 7, 4095−4097. (c) Yu, X.-J.; Chen, F.-
E.; Dai, H.-F.; Chen, X.-X.; Kuang, Y.-Y.; Xie, B. Helv. Chim. Acta
2005, 88, 2575−2581.
(5) Wendlandt, A. E.; Stahl, S. S. Angew. Chem., Int. Ed. 2015, 54,
14638−14658.
̈
(6) (a) Emanuelsson, R.; Sterby, M.; Strømme, M.; Sjodin, M. J. Am.
Chem. Soc. 2017, 139, 4828−4834. (b) Shimizu, A.; Takenaka, K.;
Handa, N.; Nokami, T.; Itoh, T.; Yoshida, J. Adv. Mater. 2017, 29,
1606592.
(7) (a) Fujiwara, Y.; Domingo, V.; Seiple, I. B.; Gianatassio, R.; Del
Bel, M.; Baran, P. S. J. Am. Chem. Soc. 2011, 133, 3292−3295.
(b) Ilangovan, A.; Saravanakumar, S.; Malayappasamy, S. Org. Lett.
2013, 15, 4968−4971. (c) Walker, S. E.; Jordan-Hore, J. A.; Johnson,
D. G.; Macgregor, S. A.; Lee, A.-L. Angew. Chem., Int. Ed. 2014, 53,
carbocationic intermediate (61 to 6) or a compact ion-pair
intermediate (2 to 3), depending on the conjugation effect of
the aryl group. In addition, a Hammett ρ value of −1.332 was
obtained from the reactions of 1 with a series of γ-(para-
substituted-phenyl)-γ-lactones, confirming the likely genera-
tion of a carbocation intermediate (see Figure S1 in the
Supporting Information).
In summary, an efficient, atom-economical, and redox-
economical strategy for quinones functionalization with diverse
lactones was developed, through a unique redox chain reaction
mechanism. A great variety of QCA derivatives were
successfully obtained in good yields, which are potentially
useful scaffolds in pharmaceutical and material discovery
research.
13876−13879. (d) Lucht, A.; Patalag, L. J.; Augustin, A. U.; Jones, P.
̈
G.; Werz, D. B. Angew. Chem., Int. Ed. 2017, 56, 10587−10591.
(e) Wang, Y.; Zhu, S.; Zou, L.-H. Eur. J. Org. Chem. 2019, 2019,
2179−2201.
(8) (a) Hinman, A. W.; Kheifets, V.; Shrader, W. D. Carboxylic Acid
Derivatives for Treatment of Oxidative Stress Disorders. Intl. Patent
No. WO 2014/194292 A1, 2014. (b) Salmon-Chemin, L.; Buisine, E.;
Yardley, V.; Kohler, S.; Debreu, M.-A.; Landry, V.; Sergheraert, C.;
Croft, S. L.; Krauth-Siegel, R. L.; Davioud-Charvet, E. J. Med. Chem.
2001, 44, 548−565. (c) Imada, I.; Okutani, T.; Watanabe, M. U.S.
Patent No. 4,495,104, 1985.
(9) (a) Fujii, S.; Shimizu, A.; Takeda, N.; Oguchi, K.; Katsurai, T.;
Shirakawa, H.; Komai, M.; Kagechika, H. Bioorg. Med. Chem. 2015,
23, 2344−2352. (b) Ong, W.; Yang, Y.; Cruciano, A. C.; McCarley, R.
L. J. Am. Chem. Soc. 2008, 130, 14739−14744.
(10) (a) Xu, X.-L.; Li, Z. Synlett 2018, 29, 1807−1813. (b) Xu, X.-
L.; Li, Z. Angew. Chem., Int. Ed. 2017, 56, 8196−8200.
(11) (a) Wu, Y.-L.; Wang, D.-L.; Guo, E.-H.; Song, S.; Feng, J.-T.;
Zhang, X. Bioorg. Med. Chem. Lett. 2017, 27, 1284−1290. (b) Huang,
L.; Jiang, H.; Qi, C.; Liu, X. J. Am. Chem. Soc. 2010, 132, 17652−
17654.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
(12) Zhu, R.; Jiang, J.-L.; Li, X.-L.; Deng, J.; Fu, Y. ACS Catal. 2017,
7, 7520−7528.
Supplementary scheme, table and figure, reagent
information, analytical information, experimental proto-
cols, and NMR spectra (PDF)
́
(13) Gomez, J. E.; Guo, W.; Gaspa, S.; Kleij, A. W. Angew. Chem.,
Int. Ed. 2017, 56, 15035−15038.
(14) Burns, N. Z.; Baran, P. S.; Hoffmann, R. W. Angew. Chem., Int.
Ed. 2009, 48, 2854−2867.
(15) Mitchell, L. J.; Moody, C. J. J. Org. Chem. 2014, 79, 11091−
11100.
AUTHOR INFORMATION
■
Corresponding Author
ORCID
(16) (a) Kuninobu, Y.; Kawata, A.; Noborio, T.; Yamamoto, S.;
Matsuki, T.; Takata, K.; Takai, K. Chem. - Asian J. 2010, 5, 941−945.
(b) Shen, J.-S.; Li, J.-F.; Li, H.-J.; Yan, T.-M.; Ji, R.-Y. Chin. J. Med.
Chem. 2001, 11, 226.
(17) (a) Li, Y.-J.; Luo, S.-C.; Lee, Y.-J.; Lin, F.-J.; Cheng, C.-C.;
Wein, Y.-S.; Kuo, Y.-H.; Huang, C.-j. J. Agric. Food Chem. 2008, 56,
11105−11113. (b) Mazzini, F.; Netscher, T.; Salvadori, P. J. Org.
Chem. 2004, 69, 9303−9306.
(18) (a) Su, Y.; Tu, Y.-Q.; Gu, P. Org. Lett. 2014, 16, 4204−4207.
(b) Kallemeyn, J. M.; Mulhern, M. M.; Ku, Y.-Y. Synlett 2011, 2011,
535−538.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
Financial support for this work was generously provided by the
National Natural Science Foundation of China (Grant No.
■
D
Org. Lett. XXXX, XXX, XXX−XXX