C O M M U N I C A T I O N S
influence on the enantioselectivity of 4. Our catalyst screening and
tuning studies led to the discovery that 4f, a cinchona alkaloid not
yet reported in the literature, could afford promising enantioselec-
tivity at room temperature (entry 12). By lowering the reaction
temperature to -20 °C, the 4f-catalyzed reaction of 6a and 5a
generated the corresponding 1,4-adduct 7a in 94% ee and nearly
quantitative yield (entry 1, Table 2).
In summary we have developed an unprecedented catalytic
enantioselective conjugate addition of simple alkyl thiols 6 to R,ꢀ-
unsaturated N-acylated oxazolidin-2-ones 5. The reaction allows
employment of a wide range of alkyl thiols while tolerates a
considerable degree of variations of the Michael acceptor. Conse-
quently, the current reaction provides a useful catalytic method for
the synthesis of optically active chiral sulfur compounds that are
otherwise difficult to prepare by asymmetric catalysis. Notably, the
current study also revealed that, upon suitable tuning, the 6′-thiourea
cinchona alkaloids 4 could afford efficient catalysis for asymmetric
conjugate additions that cannot be promoted in comparable ef-
ficiency with existing catalysts.
We were pleased to find that the high efficiency demonstrated
by 4f for the model reaction could be sustained for reactionsem-
Table 2. Conjugated Addition of 6 to 5 with 4fa
Acknowledgment. We are grateful for financial support from
the NIH (GM-61591). We acknowledge Brandeis University Mass
Spectrometry Facility (BUMS) for MS analysis.
entry
R
R′
t (°C) yield (%)b ee (%)c
Supporting Information Available: Experimental procedures and
characterization of the products. This material is available free of charge
1
2
3
4
5
6
7
8
Me (5a)
Me (5a)
Me (5a)
Me (5a)
Me (5a)
Me (5a)
Me (5a)
Me (5a)
Bn (6a)
-20
-20
-20
-20
98
99
99
98
97
95
92
91
96
97
98
96
98
96
97
99
95
93
84
94
91
94
93
96
92
93d
92
92
90
94
94
91
93
93
95
94
93
87
94
93
92
96
4-ClBn (6b)
4-OMeBn (6c)
C6H5CH2CH2 (6d)
TBSOCH2CH2 (6e) -20
TESOCH2CH2 (6f) -20
TMSCH2CH2 (6g)
i-Bu (6h)
Cyclopentyl (6i)
Allyl (6j)
4-OMeBn (6c)
4-OMeBn (6c)
4-OMeBn (6c)
4-OMeBn (6c)
4-OMeBn (6c)
4-OMeBn (6c)
4-OMeBn (6c)
Allyl (6j)
References
(1) (a) Chatgilialoglu, C.; Asmus, K.-D. Sulfur-Centered ReactiVe Intermediates
in Chemistry and Biology; Springer: New York, 1991. (b) Frau´sto da Silva,
J. R.; Williams, R. J. P. The Biological Chemistry of the Elements; Oxford
University Press: New York, 2001.
(2) (a) Zhou, Q. L.; Pfaltz, A. Tetrahedron 1994, 50, 4467. (b) Kang, J.; Kim,
J. B.; Kim, J. W.; Lee, D. J. Chem. Soc., Perkin Trans. 2 1997, 189. (c)
Jin, M.-J.; Ahn, S.-J.; Lee, K.-S. Tetrahedron Lett. 1996, 37, 8767. (d)
Anderson, J. C.; Harding, M. Chem. Commun. 1998, 393.
(3) Aroyan, C. E.; Miller, S. J. J. Am. Chem. Soc. 2007, 129, 256.
(4) (a) Fanjul, S.; Hulme, A. N.; White, J. W. Org. Lett. 2006, 8, 4219. (b)
Crimmins, M. T.; King, B. W.; Tabet, E. A.; Chaudhary, K. J. Org. Chem.
2001, 66, 894.
(5) For approaches involving catalytic desymmetrization of meso compounds,
see:Wu, M. H.; Jacobsen, E. N. J. Org. Chem. 1998, 63, 5252.
(6) (a) Emori, E.; Arai, T.; Sasai, H.; Shibasaki, M. J. Am. Chem. Soc. 1998,
120, 4043. (b) Emori, E.; Iida, T.; Shibasaki, M. J. Org. Chem. 1999, 64,
5318. (c) McDaid, P.; Chen, Y.; Deng, L. Angew. Chem., Int. Ed. 2002,
41, 338. (d) Wang, W.; Li, H.; Wang, J.; Zu, L. J. Am. Chem. Soc. 2006,
128, 10354. (e) Leow, D.; Lin, S.; Chittmalla, S. K.; Fu, X.; Tan, C.-H.
Angew. Chem., Int. Ed. 2008, 47, 5641.
-20
-20
-20
-20
-20
-20
-20
-20
-20
-20
-50
-50
-50
-50
-50
9
Me (5a)
Me (5a)
Et (5b)
10
11
12
13
14
15
16
17
18
19
20
21
n-Pr (5c)
i-Pr (5d)
n-penta (5e)
n-hex (5f)
n-hepta (5g)
C6H5 (5h)e
C6H5 (5h)e
4-ClC6H5 (5i)e
3-FC6H5 (5j)e
Allyl (6j)
Allyl (6j)
2-BrC6H5 (5k)e Allyl (6j)
(7) (a) Kobayashi, S.; Ogawa, C.; Kawamura, M.; Sugiura, M. Synlett 2001,
983. (b) Kobayashi, N.; Iwai, K. J. Org. Chem. 1981, 46, 1823. (c) Abe,
A. M. M.; Sauerland, S. J. K.; Koskinen, A. M. P. J. Org. Chem. 2007,
72, 5411. (d) For a review, see:Enders, D.; Luttgen, K.; Narine, A. Synthesis
2007, 7, 959.
a Unless noted, reactions were carried out at -20 °C for 72 h.
b Isolated yield. c Determined by HPLC analysis (see SI). d Absolute
configuration of the 1,4-adduct 7 determined to be R; for details, see SI.
e Catalyst loading: 20 mol%.
(8) (a) Marigo, M.; Schulte, T.; Franze´n, J.; Jørgensen, K. A. J. Am. Chem.
Soc. 2005, 127, 15710. (b) Brandau, S.; Maerten, E.; Jørgensen, K. A. J. Am.
Chem. Soc. 2006, 128, 14986. (c) Ricci, P.; Carlone, A.; Bartoli, G.; Bosco,
M.; Sambri, L.; Melchiorre, P. AdV. Synth. Catal. 2008, 350, 49.
(9) For applications of ꢀ-mercapto carboxylic acids in syntheses of nature
products and bioactive peptide inhibitors, see:(a) Lee, A. H. F.; Chan,
A. S. C.; Li, T. Tetrahedron 2003, 59, 833. (b) Beszant, B.; Bird, J.; Gaster,
L. M.; Harper, G. P.; Hughes, I.; Karran, E. H.; Markwell, R. E.; Miles-
Williams, A. J.; Smith, S. A. J. Med. Chem. 1993, 36, 4030. For applications
in the synthesis of polymers, see: (c) Tanaka, S.; Feng, L.; Inoue, Y. Polym.
J. 2004, 36, 570. (d) Luetke-Eversloh, T.; Fischer, A.; Remminghorst, U.;
Kawada, J.; Marchessault, R. H.; Boegershausen, A.; Kalwei, M.; Eckert,
H.; Reichelt, R.; Liu, S. J.; Steinbuechel, A. Nat. Mater. 2002, 1, 236.
(10) (a) Palomo, C.; Oiarbide, M.; Dias, F.; Ortiz, A.; Linden, A. J. Am. Chem.
Soc. 2001, 123, 5602. (b) Palomo, C.; Oiarbide, M.; Dias, F.; Lo´pez, R.;
Linden, A. Angew. Chem., Int. Ed. 2004, 43, 3307; Angew. Chem. 2004,
116, 3369.
ploying a broad range of alkyl thiols. As summarized in Table 2 (entries
1-10), in the presence of 4f, reactions with alkyl thiols containing
either an aromatic or simple aliphatic group consistently proceeded in
excellent enantioselectivity. Even secondary thiols, either acyclic (6h)
or cyclic (6i), could be applied in the reaction. The presence of various
functional groups in the alkyl thiols is well tolerated by the catalyst.
Importantly, the catalyst also demonstrated a considerable latitude in
accommodating steric as well as electronic variations of the ꢀ-sub-
stituent of the Michael acceptor 5 (entries 11-21). In particular the
reaction accommodates both a ꢀ-alkyl and -aryl substituent and
afforded a similarly high enantioselectivity for γ-branched or -un-
branched Michael acceptors (entry 13 vs 12). As demonstrated in the
conversion of the 1,4-adduct 7l to a ꢀ-mercapto ester (9), this new
catalytic enantioselective reaction provided a facile entry into chiral
sulfur compounds bearing a functional group of high oxidation state
such as carboxylic acid derivatives.
(11) (a) Hiemstra, H.; Wynberg, H. J. Am. Chem. Soc. 1981, 103, 417. (b)
Wynberg, H. Top. Stereochem. 1986, 16, 97.
(12) Zou, L.; Wang, J.; Li, H.; Xie, H.; Jiang, W.; Wang, W. J. Am. Chem.
Soc. 2007, 129, 1036.
(13) Li, H.; Wang, Y.; Tang, L.; Deng, L. J. Am. Chem. Soc. 2004, 126, 9906.
For a review, see: (b) Marcelli, T.; van Maarseveen, J. H.; Hiemstra, H.
Angew. Chem., Int. Ed. 2006, 45, 7496.
(14) (a) Vakulya, B.; Varga, S.; Csa’mpai, A.; Soo’s, T. Org. Lett. 2005, 7,
1967. For a review, see: (b) Connon, S. J. Chem. Commun. 2008, 2499.
(15) For a review, see:Doyle, A. G.; Jacobsen, E. N. Chem. ReV. 2007, 107,
5713.
Scheme 1. Asymmetric Synthesis of ꢀ-Mercapto Ester 9
(16) Catalyst 4a was reported as an effective catalyst for asymmetric Henry
reactions; see:Marcelli, T.; van der Haas, R. N. S.; van Maarseveen, J. H.;
Hiemstra, H. Angew. Chem., Int. Ed. 2006, 45, 929.
JA8085092
9
J. AM. CHEM. SOC. VOL. 131, NO. 2, 2009 419