LETTER
Intramolecular Cyclization of Radicals Generated by Kolbe Electrolysis
2819
(3) (a) Davies, A. G. J. Chem. Res. 2006, 3, 141. (b) Büchi, G.;
Wüst, H. J. Org. Chem. 1979, 44, 546. (c) Stork, G.; Mook,
R. J. Am. Chem. Soc. 1983, 105, 3720.
(4) (a) Danishefsky, S.; Chackalamannil, S.; Uang, B.-J. J. Org.
Chem. 1982, 47, 2231. (b) Corey, E.; Shih, C.; Shih, N.-Y.;
Shimoji, K. Tetrahedron Lett. 1984, 25, 5013.
(5) (a) Chatgilialoglu, C.; Ferreri, C.; Gimisis, T. The
Chemistry of Organic Silicon Compounds, Vol. 2;
Rappoport, S.; Apeloig, Y., Eds.; Wiley: London, 1998,
1539. (b) Arya, P.; Samson, C.; Lesage, M.; Griller, D.
J. Org. Chem. 1990, 55, 6248. (c) Gandon, L. A.; Russell,
A. G.; Guveli, T.; Brodwolf, A. E.; Kariuki, B. M.; Spencer,
N.; Snaith, J. S. J. Org. Chem. 2006, 71, 5198.
O
OEt
O
OEt
O
O
HO
O
HO
O
O
22a
22b
O
O
O
HO
OEt
HO
OEt
O
O
22c
22d
(d) Varlamov, V. T.; Denisov, E. T.; Chatgilialoglu, C.
J. Org. Chem. 2001, 66, 6317. (e) Wnuk, S. F.; Garcia, P. I.;
Wang, Z. Org. Lett. 2004, 6, 2047.
Figure 3 Five- and six-membered heterocyclic precursors
(6) (a) Zard, S. Z. Angew. Chem., Int. Ed. Engl. 1997, 36, 673.
(b) Walter, W.; Bode, K. D. Angew. Chem., Int. Ed. Engl.
1967, 6, 281.
tuted heterocycles. Only electron-deficient co-acids, such
as trifluoroacetic acid, failed to couple with 22a, most
probably because of identical polarity of the in situ gener-
ated radicals.
(7) (a) Grimshaw, J. Electrochemical Reactions and
Mechanisms in Organic Chemistry; Elsevier Science:
Amsterdam, 2000. (b) Duñach, E. A.; Esteves, P.; Freitas,
A. M.; Medeiros, M. J.; Olivero, S. Tetrahedron Lett. 1999,
40, 8693. (c) Toyota, M.; Ilangovan, A.; Kashiwagi, Y.;
Ihara, M. Org. Lett. 2004, 6, 3629. (d) Torii, S.; Inokuchi,
T.; Yukawa, T. J. Org. Chem. 1985, 50, 5875. (e) Miranda,
J. A.; Wade, C. J.; Little, R. D. J. Org. Chem. 2005, 70, 8017.
(8) (a) Duñach, E.; Esteves, A. P.; Medeiros, M. J.; Olivero, S.
Tetrahedron Lett. 2004, 45, 7935. (b) Toyota, M.;
Ilangovan, A.; Kashiwagi, Y.; Ihara, M. Org. Lett. 2004, 6,
3629. (c) Torii, S.; Inokuchi, T.; Yukawa, T. J. Org. Chem.
1985, 50, 5875.
(9) (a) Scheffold, R. In Transition Metals in Organic Synthesis;
Scheffold, R., Ed.; Wiley: New York, 1983, 355.
(b) Scheffold, R.; Dike, M.; Dike, S.; Herold, T.; Walder, L.
J. Am. Chem. Soc. 1980, 102, 3642. (c) Scheffold, R.;
Abrecht, S.; Orlinski, R.; Ruf, H.-R.; Stamouli, P.;
Tinembart, O.; Walder, L.; Weymuth, C. Pure Appl. Chem.
1987, 59, 363.
(10) (a) Utley, J. Chem. Soc. Rev. 1997, 26, 157. (b) Torii, S.;
Tanaka, H. In Organic Electrochemistry, 4th ed; Lund, H.;
Hammerich, O., Eds.; Marcel Dekker: New York, 2001, 499.
(11) For the preparation of Kolbe dimers, see: (a) Brown, A. C.;
Walker, J. Justus Liebigs Ann. Chem. 1891, 261, 107.
(b) Fichter, F.; Lurie, S. Helv. Chim. Acta 1933, 16, 885.
(12) For Kolbe cross-coupling reactions, see: (a) Seebach, D.;
Renaud, P. Helv. Chim. Acta 1985, 68, 2342. (b) Kubota,
T.; Aoyagi, R.; Sando, H.; Kawasumi, M.; Tanaka, T. Chem.
Lett. 1987, 1435.
(13) (a) Garwood, R. F.; Weedon, B. C. L. J. Chem. Soc., Perkin
Trans. 1 1973, 2714. (b) Weiguny, J.; Schäfer, H. J.
Electroorg. Synth. 1993, 57, 235. (c) Matzeit, A.; Schäfer,
H.; Amatore, C. Synthesis 1995, 1432.
In contrast, the tertiary radical derived from 22b cyclized
only poorly, probably owing to its steric hindrance
(Table 2, entry 2). Whereas acid 22c was smoothly trans-
formed into tetrahydropyran 25 (Table 2, entry 3), the re-
moval of the gem-dimethyl substituent resulted in a
reduced yield of 26 (entry 4).17
In summary, we have developed an efficient electrochem-
ical method for the ecologically benign and safe synthesis
of substituted carbocycles, tetrahydrofurans, and tetrahy-
dropyrans from w-unsaturated carboxylic acids. Our ap-
proach embodies a Kolbe decarboxylation followed by a
radical cyclization. The intermediate radical is finally cap-
tured by another radical, generated by the concomitant de-
carboxylation of the co-acid, leading to the generation of
two carbon–carbon bonds in a single operation. The sim-
plicity, broad functional-group tolerance and good yields,
provided by this electrochemical oxidation, makes this
procedure an attractive methodology for the synthesis of
variously functionalized cyclic structures.
Acknowledgment
Financial support for this research by the Fonds pour la Formation
à la Recherche dans l’Industrie et dans l’Agriculture (FRIA, stu-
dentship to F. Lebreux), Astra Zeneca, Syngenta (studentship to F.
Buzzo), the Université catholique de Louvain and Merck Sharp and
Dohme (Academic Development Program Award to I.E. Markó) is
gratefully acknowledged.
(14) Although a radical adsorbed on an electrode surface might
display altered behavior, we believe that the slightly
nucleophilic character of the alkyl radical 3 is preserved.
See, for example: (a) Chkir, M.; Lelandais, D. J. Chem.
Soc., Chem. Commun. 1971, 1369. (b) Giese, B. Angew.
Chem., Int. Ed. Engl. 1983, 22, 753. For a scale measuring
the nucleophilicity of radicals, see: (c) De Vleeschouwer,
F.; Van Speybroeck, V.; Waroquier, M.; Geerlings, P.; De
Proft, F. Org. Lett. 2007, 9, 2721.
References and Notes
(1) (a) Giese, B. Radicals in Organic Synthesis: Formation of
Carbon–Carbon Bonds; Pergamon: Oxford, 1986.
(b) Curran, D. P. In Comprehensive Organic Synthesis, 4;
Trost, B. M.; Fleming, I.; Semmelhack, M. F., Eds.;
Pergamon: Oxford, 1991, 715. (c) Beckwith, A. L. J. Chem.
Soc. Rev. 1993, 143.
(15) Heinhorn, J.; Soulier, J.-L.; Bacquet, C.; Lelandais, D. Can.
(2) (a) Rossi, R. A.; Penenory, A. B. Curr. Org. Synth. 2006, 3,
121. (b) Majumdar, K. C.; Basu, P. K.; Chattopadhyay, S. K.
Tetrahedron 2006, 63, 793. (c) Walton, J. C. Top. Curr.
Chem. 2006, 264, 163.
J. Chem. 1983, 61, 584.
(16) Representative Procedure for the Electrochemical
Synthesis of Carbocycles and Heterocycles
In an undivided beaker-type cell (100 mL) bearing two
Synlett 2008, No. 18, 2815–2820 © Thieme Stuttgart · New York