M. Tonelli et al. / Bioorg. Med. Chem. 17 (2009) 4425–4440
4439
et al. coupling algorithm47 with separate coupling of the solute and
Acknowledgments
solvent to the heat, an integration time step of 2 fs, and the appli-
cations of the Shake algorithm to constrain all bonds to their equi-
librium values, thus removing high frequency vibrations. Long-
range nonbonded van der Waals interactions were truncated by
using a dual cutoff of 9 and 13 Å, respectively, where energies
and forces due to interactions between 9 and 13 Å were updated
every 20 time steps. The particle mesh Ewald method was used
to treat the long-range electrostatics. For the calculation of the
binding free energy between the RdRp and each inhibitor in water,
a total of 100 snapshots were saved during the MD data collection
period described above, one snapshot per each 0.1 ns of MD
simulation.
Financial support from Italian MIUR (FIRB RBNE01J3SK01) and
BIOMEDICINE PROJECT is gratefully acknowledged. The authors
thanks O. Gagliardo for performing the elemental analyses.
Supplementary data
Supplementary data associated with this article can be found, in
References and notes
1. Tonelli, M.; Boido, V.; Canu, C.; Sparatore, A.; Sparatore, F.; Paneni, M. S.;
Fermeglia, M.; Pricl, S.; La Colla, P.; Casula, L.; Ibba, C.; Collu, D.; Loddo, R.
Bioorg. Med. Chem. 2008, 16, 8447.
2. Elslager, E. F.; Worth, D. F. J. Med. Chem. 1963, 6, 444.
3. Werbel, L. M.; Elslager, E. F.; Fisher, M. V.; Gavrilis, Z. B.; Phillips, A. A. J. Med.
Chem. 1968, 11, 411.
4. Vazzana, I.; Sparatore, F.; Fadda, G.; Manca, C. Farmaco 1993, 48, 737.
5. Novelli, F.; Sparatore, F. Farmaco 2002, 57, 871. and references cited therein.
6. Barbieri, F.; Sparatore, A.; Alama, A.; Novelli, F.; Bruzzo, C.; Sparatore, F. Oncol.
Res. 2003, 13.
7. Sparatore, F.; Sommovigo, P. G.; Boido, V. Boll. Chim. Farm. 1974, 113, 219.
8. Gesher, J. A.; Hickman, J. A.; Simmonds, R. G.; Stevens, M. F. G.; Vaughan, K.
Biochem. Pharmacol. 1981, 30, 89.
The binding free energy
DGbind of each RdRp/drug complex in
water was calculated according to the procedure termed Molecular
Mechanic/Poisson–Boltzmann Surface Area (MM/PBSA), and origi-
nally proposed by Srinivasan et al.48 In the MM/PBSA framework of
theory, the binding free energy of a given ligand to its receptor pro-
tein can be evaluated as
D
Gbind ¼ Gcomplex ꢀ ðGprotein þ Gligand
The individual terms of the MM/PBSA approach that contribute
Þ
ð1Þ
to the free energy of a molecule are
9. Prous, J.; Graul, A.; Castañer, J. Drugs Fut. 1994, 19, 746.
10. Dumont-Hornebeck, B.; Strube, Y. N.; Vasilescu, D.; Jean-Claude, B. J. Bioorg.
Med. Chem. Lett. 2000, 10, 2325.
11. Matheson, S. L.; Mc Namee, J.; Jean-Claude, B. J. Cancer Chemother. Pharmacol.
2003, 51, 11.
12. Manolov, J.; Machulla, H.-J.; Momekov, G. Pharmazie 2006, 61, 6.
13. Stevens, M. F. G.; Phillips, K. S.; Rathbone, D. L.; O’ Shea, D. M.; Queener, S. F.;
Schwalbe, C. H.; Lambert, P. A. J. Med. Chem. 1997, 40, 1886.
14. Yamada, Y.; Saito, J.; Kudamatsu, A.; Katsumata, O. Ger. Offen. 2147259, 1972;
Chem. Abstr. 1972, 77, 5145a.
15. Borowski, P.; Deinert, J.; Schalinski, S.; Bretner, M.; Ginalski, K.; Kulikowski, T.;
Shugar, D. Eur. J. Biochem. 2003, 270, 1645.
16. Wu, C.-Y.; King, K.-J.; Kuo, C.-J.; Fang, J.-M.; Wu, J.-T.; Ho, M.-Y.; Liao, C.-L.; Shie,
J.-J.; Liang, P.-H.; Wong, C.-H. Chem. Biol 2006, 13, 261.
17. Tonelli, M.; Paglietti, G.; Boido, V.; Sparatore, F.; Marongiu, F.; Marongiu, E.; La
Colla, P.; Loddo, R. Chem. Biodiversity 2008, 5, 2386.
18. Boido, V.; Sparatore, F. Farmaco Ed. Sci. 1974, 29, 526.
19. Meanwell, N. A.; Krystal, M. Drugs Fut. 2007, 32, 441. and references cited
therein.
Gmol ¼ EMM þ Gsolv ꢀ TSsolute
ð2Þ
where EMM denotes the sum of intra- and intermolecular mechani-
cal (MM) energies of a molecule in the gas phase, Gsolv is its solva-
tion free energy, and –TSsolute represents an estimate of the solute
entropy. EMM can be further divided into terms arising from electro-
static (Eel), van der Waals (EvdW), and internal (Eint) (i.e., bond, angle,
and torsional energies):
EMM ¼ Eel þ EvdW þ Eint
The solvation free energy:
Gsolv ¼ GPB þ Gnp
consists of a polar solvation energy component, GPB, which is calcu-
lated in a continuum solvent, usually a finite-difference Poisson-
Boltzmann (PB) model, and a nonpolar term, Gnp, which is propor-
tional to the solvent-accessible surface area (SA).
ð3Þ
ð4Þ
20. Henderson, E. A.; Alber, D. G.; Baxter, R. C.; Bithell, S. K.; Budworth, J.; Carter, M.
C.; Chub, A.; Cockerill, G. S.; Dowdell, V. C. L.; Fraser, I. J.; Harris, R. A.; Keegan, S.
J.; Kelsey, R. D.; Lumley, J. A.; Stables, J. N.; Weerasekera, N.; Willson, L. J.;
Powell, K. L. J. Med. Chem. 2007, 50, 1685.
Theensembleofstructuresfortheuncomplexedreactantsaregen-
erated either running separate MD simulations for them, or by using
the trajectory of the complex, simply removing the atoms of the
protein or ligand. In this work we applied the latter variant. Accord-
ingly, the term Eint in Eq. 2 cancels out in the calculation of the free en-
ergy of binding. The calculations of the polar solvation term GPB were
done with the DelPhi package,49 with interior and exterior dielectric
constants equal to 1 and 80, respectively. A grid spacing of 2/Å,
extending 20% beyond the dimensions of the solute, was employed.
The non-polar component GNP was obtained using the following
21. Houe, H. Biologicals 2003, 31, 137.
22. Buckwold, V. E.; Beer, B. E.; Donis, R. O. Antiviral Res. 2003, 60, 1.
23. Paeshuyse, J.; Leyssen, P.; Mabery, E.; Boddeker, N.; Vrancken, R.; Froeyen, M.;
Ansari, I. H.; Dutartre, H.; Rozenski, J.; Gil, L. H. V. G.; Letellier, C.; Lanford, R.;
Canard, B.; Koenen, F.; Kerkhofs, P.; Donis, R. O.; Herdewijn, P.; Watson, J.; De
Clercq, E.; Puerstinger, G.; Neyts, J. J. Virol. 2006, 80, 149.
24. Baginski, S. G.; Pevar, D. C.; Seipel, M.; Sun, S. C.; Benetatos, C. A.; Chunduru, S.
K.; Rice, C. M.; Collett, M. S. Proc. Natl. Acd. Sci. U.S.A. 2000, 97, 7981.
25. King, R. W.; Scarnati, H. T.; Priestley, E. S.; De Lucca, I.; Bansal, A.; Williams, J. K.
Antivir. Chem. Chemother. 2002, 13, 315.
26. Sun, J. H.; Lemm, J. A.; O’Boyle, D. R., II; Racela, J.; Colonno, R.; Gao, M. J. Virol.
2003, 77, 6753.
27. Tabarrini, O.; Manfroni, G.; Fravolini, A.; Cecchetti, V.; Sabatini, S.; De Clercq, E.;
Rozenski, J.; Canard, B.; Dutartre, H.; Paeshuyse, J.; Neyts, J. J. Med. Chem. 2006,
49, 2621.
28. Bressanelli, S.; Tomei, L.; Roussel, A.; Incitti, I.; Vitale, R. L.; Mathieu, M.; De
Francesco, R.; Rey, F. A. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 13034.
29. Ago, H.; Adachi, T.; Yoshida, A.; Yamamoto, M.; Habuka, N.; Yatsunami, K.;
Miyano, M. Structure 1999, 7, 1417.
30. Lesburg, C. A.; Cable, M. B.; Ferrari, E.; Hong, Z.; Mannarino, A.; Weber, P. C. Nat.
Struct. Biol. 1999, 6, 937.
31. Choi, K. H.; Groarke, J. M.; Young, D. C.; Kuhn, R. J.; Smith, J. L.; Pevear, D. C.;
Rossmann, M. G. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 4425.
32. Choi, K. H.; Gallei, A.; Becher, P.; Rossmann, M. G. Structure 2006, 14, 1107.
33. Carta, A.; Loriga, M.; Paglietti, G.; Ferrone, M.; Fermeglia, M.; Pricl, S.; Sanna, T.;
Ibba, C.; La Colla, P.; Loddo, R. Bioorg. Med. Chem. 2007, 15, 1914.
34. Mazzei, M.; Nieddu, E.; Miele, M.; Balbi, A.; Ferrone, M.; Fermeglia, M.; Mazzei,
M. T.; Pricl, S.; La Colla, P.; Marongiu, F.; Ibba, C.; Loddo, R. Bioorg. Med. Chem.
2008, 16, 2591.
relationship: GNP = cSA + b, in which c
= 0.00542 kcal/(mol Å2),
b = 0.92 kcal/mol, and the surface area was estimated by means of
the MSMS software.50 The last parameter in Eq. 1, that is, the change
in solute entropy upon association –TSsolute, was calculated through
normal-mode analysis. In the first step of this calculation, an 8-Å
sphere around the ligand was cut out from an MD snapshot for each
ligand-protein complex. This value was shown to be large enough to
yield converged mean changes in solute entropy. On the basis of the
size-reduced snapshots of the complex, we generated structures of
the uncomplexed reactants by removing the atoms of the protein
and ligand, respectively. Each of those structures was minimized,
using a distance-dependent dielectric constant e = 4r, to account for
solvent screening, and its entropy was calculated using classical sta-
tistical formulas and normal mode-analysis. To minimize the effects
due to different conformations adopted by individual snapshots we
averaged the estimation of entropy over 50 snapshots.
35. Lai, V. C.; Kao, C. C.; Ferrari, E.; Park, J.; Uss, A. S.; Wright-Minogue, J.; Hong, Z.;
Lau, J. Y. J. Virol. 1999, 73, 10129.
36. Dimitrova, M.; Imbert, I.; Kieny, M. P.; Schuster, C. J. Virol. 2003, 77,
5401.