728
B. Datta, M.A. Pasha / Ultrasonics Sonochemistry 19 (2012) 725–728
Table 5
[3] T.J. Mason, E.C.D. Meulenaer, Practical Considerations for Process Optimisation,
Synthesis of 2-amino-4H-chromene derivatives catalyzed by glycinea under silent and
Synthetic Organic Sonochemistry, Plenum Press, 1998, p. 301.
[4] T.J. Mason, J.P. Lorimer, Sonochemistry: Theory, Application and Uses of
Ultrasound in Chemistry, John Wiley and Son, New York, 1988.
[5] D.C. Rideout, R. Breslow, J. Am. Chem. Soc. 102 (1980) 7816.
[6] (a) R. Breslow, Acc. Chem. Res. 24 (1991) 159;
sonic conditions.
Entry
R1
Product (4)
Time/yield
Time/yield
(min/(%))c
(
, min/(%))b
(b) R. Breslow, Acc. Chem. Res. 37 (2004) 471.
[7] (a) W. Richards, A. Loomis, J. Am. Chem. Soc. 49 (1927) 3086;
(b) R. Wood, A. Loomis, Philos. Mag. 4 (1927) 414.
[8] M. Curini, G. Cravotto, F. Epifano, G. Giannone, Curr. Med. Chem. 13 (2006) 199.
[9] P. O’Kennedy, R.D. Thornes, In Coumarins: Biology, Applications and Mode of
Action, John Wiley and Sons, Chichester, 1997.
1
2
3
4
5
H
4a
4b
4f
4l
4m
9/25
9/94
4-OMe
4-OH
3-NO2
2-NO2
20/40
30/47
20/35
40/45
18/91
20/95
36/89
32/90
[10] (a) W.P. Smith, L.S. Sollis, D.P. Howes, C.P. Cherry, D.I. Starkey, N.K. Cobley, J.
Med. Chem. 41 (1998) 787;
(b) A.G. Martinez, L.J. Marco, Bioorg. Med. Chem. Lett. 7 (1997) 3165.
[11] G.A. Kraus, I. Kim, J. Org. Chem. 68 (2003) 4517.
[12] K. Hiramoto, A. Nasuhara, K. Michiloshi, T. Kato, K. Kikugawa, Mutat. Res. 395
(1997) 47.
a
Reaction condition: aromatic aldehyde (2 mmol), malononitrile (2 mmol), res-
orcinol (2 mmol), glycine (15 mol%) and water (5 mL).
b
Silent.
Sonication.
c
[13] J.G. Tangmouo, A.L. Meli, J. Komguem, V. Kuete, F.N. Ngounou, D. Lontsi, V.P.
Beng, M.I. Choudhary, B.L. Sondengam, Tetrahedron Lett. 47 (2006) 3067.
[14] (a) R.O.S. Kitamura, P. Romoff, M.C.M. Young, M.J. Kato, J.H.G. Lago,
Phytochemistry 67 (2006) 2398;
(b) F. Borges, F. Roleira, N. Milhazes, L. Santana, E. Uriarte, Curr. Med. Chem. 12
(2005) 887.
[15] (a) F. Chimenti, B. Bizzarri, A. Bolasco, D. Secci, P. Chimenti, S. Carradori, A.
Granese, D. Rivanera, D. Lilli, M.M. Scaltrito, M.I. Brenciaglia, Eur. J. Med. Chem.
41 (2006) 208;
(b) S.J. Mohr, M.A. Chirigos, F.S. Fuhrman, J.W. Pryor, Cancer Res. 35 (1975)
3750.
[16] (a) D.R. Anderson, S. Hegde, E. Reinhard, L. Gomez, W.F. Vernier, L. Lee, S. Liu,
A. Sambandam, P.A. Snider, L. Masih, Bioorg. Med. Chem. Lett. 15 (2005) 1587;
(b) J. Skommer, D. Wlodkowic, M. Matto, M. Eray, J. Pelkonen, Leukemia Res.
30 (2006) 322.
[17] M.V. Kulkarni, G.M. Kulkarni, C.H. Lin, C.M. Sun, Curr. Med. Chem. 13 (2006)
2795.
[18] G.P. Ellis, A. Weissberger, E.C. Taylor (Eds.), John Wiley, New York, 1977, p. 11.
[19] E.A. Hafez, M.H. Elnagdi, A.G.A. Elagemey, F.M.A.A. El-Taweel, Heterocycles 26
(1987) 903.
got well accelerated under sonic condition. In the present reaction,
the reactants are partially dissolved initially, and the reaction be-
gins only under the influence of ultrasound which can be explained
as follows: when cavitation occurs near the solid surface (of solid
substrates), cavity collapse is non-spherical and as a result of this
a liquid jet will be formed which is targeted at the surface. Depend-
ing upon the conditions used, this powerful jet can also activate the
catalyst by heat transfer to the surface through disruption of inter-
facial boundary layers. At a liquid–liquid interface (heteroge-
neous), the intense movement due to the liquid–jet formation
also leads to the mutual injection of droplets of one liquid into
the other one, producing emulsions as in the present reaction.
These emulsion droplets are smaller in size and hence the overall
reactant contact surface gets increased. The driving force for the
increased efficiency of formation of 2-amino-4H-chromenes under
sonic condition is because of the increase in the temperature due
to the formation of hot spots; and due to increase in the reactant
contact surface area through cavitation phenomenon [4,27].
[20] A. Mobinikhaledi, H. Moghanian, F. Sasani, Synth. Reac. Inorganic, Metal–
Organic, and Nano-Metal Chemistry 41 (2011) 262.
[21] D.S. Raghuvanshi, K.N. Singh ARKIVOC x (2010) 305.
[22] A.M. Shestopalov, Y.M. Emelianov, V.N. Nesterov, Russ. Chem. Bull. Int. Ed. 51
(2002).
[23] S. Makarem, A.A. Mohammadi, A.R. Fakhari, Tetrahedron Lett. 49 (2008) 7194.
[24] (a) A. Wout, M. Wolken, R.T. Have, J. Mariet, W. van der, J. Agric. Food Chem.
48 (2000) 5401;
4. Conclusions
(b) B. Alcaide, P. Almendros, A. Luna, M.S. Torres, J. Org. Chem. 71 (2006) 4818;
(c) J.M. Janey, Y. Hsiano, J.D. Armstrong, J. Org. Chem. 71 (2006) 390;
(d) S. Chandrasekhar, N.S. Reddy, S.S. Sultana, C. Narsihmulu, K.V. Reddy,
Tetrahedron 62 (2006) 338.
An ultrasound-assisted method for the synthesis of 2-amino-
4H-chromene derivatives is studied in details. This one-pot
condensation reaction, leading to a series of polysubstituted
chromenes can be carried out efficiently using glycine as an organ-
ocatalyst in water as solvent. Ultrasound accelerates greatly the
reaction rate and enhances the yields. The method described in this
paper is mild and energy efficient and provides a very reliable pro-
cedure for the synthesis of 2-amino-4H-chromene derivatives.
[25] (a) H. Li, B. Wang, L. Deng, J. Am. Chem. Soc. 128 (2006) 732;
(b) T.B. Poulsen, L. Bernardi, M. Bell, K.A. Jorgensen, Angew. Chem. Int. Ed. 45
(2006) 6551;
(c) J. Mabry, B. Ganem, Tetrahedron Lett. 47 (2006) 55.
[26] (a) M.B.M. Reddy, V.P. Jayashankara, M.A. Pasha, Synth. Commun. 40 (2010)
2930;
(b) M.A. Pasha, V.P. Jayashankara, Bioorg. Med. Chem. Lett. 17 (2006) 621;
(c) B. Datta, M.A. Pasha, Ultrason. Sonochem. 18 (2011) 624;
(d) K. Rama, M.A. Pasha, Ultrason. Sonochem. 12 (2005) 437;
(e) M.A. Pasha, V.P. Jayashankara, Ultrason. Sonochem. 13 (2006) 42;
(f) M.A. Pasha, Y.Y. Myint, Ultrason. Sonochem. 13 (2006) 175.
[27] (a) P.R. Gogate, A.B. Pandit, Adv. Environ. Res. 26 (2003) 17;
(b) T.J. Mason, Ultrason. Sonochem. 10 (2003) 175;
References
[1] P.T. Anastas, M.M. Kirchhoff, Acc. Chem. Res. 35 (2002) 686.
[2] (a) M. Nuchter, B. Ondruschka, A. Jungnickel, U. Muller, J. Phys. Org. Chem. 13
(2000) 579;
(c) T.J. Mason, L. Paniwnyk, J.P. Lorimer, Ultrason. Sonochem. 3 (1996) 253.
(b) R.S. Varma, Green Chem. 10 (2008) 1129 and references cited therein.