Scandium Aminopyridinates for Isoprene Polymerization
α-CH2, THF), 5.59 (d, 3J(H,H) = 8.6 Hz, 1 H, 3-H), 6.06 (d, valve in C6D6 (0.5 mL). After the addition of 6 equiv. trimethylalu-
3J(H,H) = 7.1 Hz, 1 H, 5-H), 7.05–7.28 (m, 18 H, 4,9,11,18,19,20- minium (19 µL, 0.2 mmol) the tube was sealed and shaken. 1H
H, BC6H5), 7.95 (br., 8 H, o-BC6H5) ppm. 13C NMR (100 MHz,
C6D6, 298 K): δ = 3.4, 23.7, 24.6, 24.7, 25.5, 25.6, 26.5, 29.2, 31.2,
35.1, 40.6, 72.7, 108.5, 113.4, 121.7, 122.6, 125.4, 126.5, 127.3,
NMR (400 MHz, C6D6, 298 K): δ = –0.34 (s, 24 H, AlMe4), –0.13–
0.07 (br., 30 H, AlMe3, NAlMe2), 0.19 (d, 3J(H,H) = 3.0 Hz, 24
3
H, Si(CH3)2), 1.08 (d, J(H,H) = 6.7 Hz, 6 H, CH(CH3)2), 1.12 (d,
3
129.7, 137.4, 139.3, 141.7, 142.5, 147.2, 151.4, 154.9, 165.4 (q, 3J(H,H) = 6.8 Hz, 6 H, CH(CH3)2), 1.26 (d, J(H,H) = 6.9 Hz, 6
1J(C,B) = 49.5 Hz, BC6H5), 169.7 ppm.
H, CH(CH3)2), 1.31 (d, J(H,H) = 6.7 Hz, 6 H, CH(CH3)2), 1.32
3
3
(d, J(H,H) = 6.8 Hz, 6 H, CH(CH3)2), 2.76–2.95 (m, 3 H, 13,14/
Synthesis of 6a: The compounds [Sc{N(SiHMe2)2}3(thf)] (797 mg,
1.55 mmol) and 1a (708 mg, 1.55 mmol) were dissolved in toluene
(20 mL). The reaction mixture was stirred at 60 °C for 4 d. All vola-
tiles were removed and the residue was extracted with hexane
(40 mL). The solvent was removed in vacuo to yield 925 mg (78%)
of a yellow crystalline compound. C40H71N4ScSi4 (765.3): calcd. C
62.78, H 9.35, N 7.32; found C 62.26, H 9.49, N 7.02. 1H NMR
(400 MHz, C6D6, 298 K): δ = 0.17 (d, 3J(H,H) = 2.3 Hz, 12 H,
Si(CH3)2), 0.23 (d, 3J(H,H) = 2.2 Hz, 12 H, Si(CH3)2), 1.11–1.15
(m, 12 H, CH(CH3)2), 1.27 (d, 3J(H,H) = 6.9 Hz, 6 H, 30,31-H),
1.40–1.42 (m, 12 H, CH(CH3)2), 2.83 (sept, 3J(H,H) = 6.9 Hz, 1
22,23-H, 15-H), 3.37 (sept, 3J(H,H) = 6.7 Hz, 2 H, 13,14/22,23-H),
4.74 (sept, 1J(Si,H) = 211, 3J(H,H) = 3 Hz, 4 H, SiH), 5.68 (d,
3J(H,H) = 8.6 Hz, 1 H, 3-H), 6.13 (d, 3J(H,H) = 7.1 Hz, 1 H, 5-
3
3
H), 6.80 (dd, J(H,H) = 7.1, J(H,H) = 8.6 Hz, 1 H, 4-H), 7.17 (s,
2 H, 9,11-H), 7.23 (s, 3 H, 18,19,20-H) ppm.
Polymerization of Isoprene: A detailed polymerization procedure
(Table 1, run 4) is described as a typical example. In a glove box
the complex 2a (8 mg, 10 µmol) was dissolved in C6H5Cl (8 mL)
and isoprene (680 mg, 1 mL, 10 mmol) was added. The mixture
was placed in a water bath (20 C). Then AlMe3 (100 µmol, 50 µL,
2.0 in hexane) and a solution of [C6H5NH(CH3)2][B(C6F5)4]
(8 mg, 10 µmol) in C6H5Cl (2 mL) were added. After stirring for
20 h at room temperature the mixture was poured into a large
quantity of acidified 2-propanol containing 0.1% (w/w) 2,6-di-tert-
butyl-4-methylphenol as a stabilizing agent. The precipitated poly-
mer was decanted, washed with 2-propanol and dried in vacuo at
60 °C to a constant weight to afford 680 mg of polyisoprene
(100%). The microstructure of the polymer was examined by 13C
NMR spectroscopy in CDCl3.
3
H, 15-H), 2.95 (sept, J(H,H) = 6.8 Hz, 2 H, 13,14/22,23-H), 3.60
3
1
(sept, J(H,H) = 6.8 Hz, 2 H, 13,14/22,23-H), 4.92 (br., J(Si,H) =
3
162 Hz, 4 H, SiH), 5.63 (d, J(H,H) = 8.6 Hz, 1 H, 3-H), 6.02 (d,
3J(H,H) = 7.0 Hz, 1 H, 5-H), 6.67 (t, 3J(H,H) = 7.8 Hz, 1 H, 4-H),
7.14–7.28 (m, 5 H, 9,11,18,19,20-H) ppm. 1H NMR (300 MHz,
[D8]toluene, 373 K): δ = 0.15 (d, 3J(H,H) = 2.8 Hz, 24 H,
Si(CH3)2) 1.09 (d, 3J(H,H) = 6.8 Hz, 6 H, CH(CH3)2), 1.11 (d,
3
3J(H,H) = 6.8 Hz, 6 H, CH(CH3)2), 1.26 (d, J(H,H) = 6.9 Hz, 6
3
H, 30,31-H), 1.34 (d, J(H,H) = 6.8 Hz, 6 H, CH(CH3)2), 1.38 (d,
3
3J(H,H) = 6.8 Hz, 6 H, CH(CH3)2), 2.85 (sept, J(H,H) = 6.9 Hz,
1 H, 15-H), 2.94 (sept, 3J(H,H) = 6.8 Hz, 2 H, 13,14/22,23-H), 3.52
3
3
(sept, J(H,H) = 6.8 Hz, 2 H, 13,14/22,23-H), 4.86 (sept, J(H,H)
Acknowledgments
= 2.8, 1J(Si,H) = 164 Hz, 4 H, SiH), 5.66 (dd, 3J(H,H) = 8.6,
1J(H,H) = 0.9 Hz, 1 H, 3-H), 6.01 (dd, J(H,H) = 7.0, J(H,H) =
0.9 Hz, 1 H, 5-H), 6.80 (dd, 3J(H,H) = 7.0, 3J(H,H) = 8.6 Hz, 1 H,
4-H), 6.96–7.22 (m, 5 H, 9,11,18,19,20-H) ppm. 13C NMR
(100 MHz, C6D6, 298 K): δ = 2.1, 2.8, 24.1, 24.2, 24.3, 25.4, 25.7,
28.3, 30.9, 34.7, 107.2, 111.5, 121.0, 124.3, 125.6, 135.3, 139.3,
142.7, 144.1, 146.4, 149.3, 156.3 168.6; ppm. 29Si NMR (60 MHz,
[D8]toluene, 298 K): δ = –19.3 ppm.
3
1
Financial support from the Deutsche Forschungsgemeinschaft
(DFG) (SPP 1166 “Lanthanide-specific functionalities in molecules
and materials“) and the Fonds der Chemischen Industrie is ac-
knowledged. We thank A. M. Dietel and H. Maisel for lab assist-
ance.
NMR Tube Reaction of 2a with [C6H5NH(CH3)2][B(C6F5)4]: The
compounds 2a (15 mg, 20 µmol) and [C6H5NH(CH3)2][B(C6F5)4]
(16 mg, 20 µmol) were dissolved in deuterated bromobenzene
(0.5 mL) and thf (30 µL) was added. After 5 min the solution was
transferred into a NMR tube equipped with a young valve. 1H
NMR (400 MHz, C6D5Br, 298 K): δ = 0.00 (s, 12 H, SiMe4), 0.11
(s, 9 H, CH2SiMe3), 0.31 (br., 2 H, CH2SiMe3), 1.10–1.13 (m, 12
[1] a) S. Arndt, K. Beckerle, P. M. Zeimentz, T. P. Spaniol, J.
Okuda, Angew. Chem. 2005, 117, 7640–7644; Angew. Chem.
Int. Ed. 2005, 44, 7473–7477; b) L. Zhang, Y. Luo, Z. Hou, J.
Am. Chem. Soc. 2005, 127, 14562–14563.
[2] a) E. Le Roux, F. Nief, F. Jaroschik, K. W. Törnroos, R. An-
wander, Dalton Trans. 2007, 4866; b) M. Zimmermann, K. W.
Törnroos, R. Anwander, Angew. Chem. 2008, 120, 787–790;
Angew. Chem. Int. Ed. 2008, 47, 775–778; c) M. Zimmermann,
K. W. Törnroos, H. Sitzmann, R. Anwander, Chem. Eur. J.
2008, 14, 7266–7277; d) B. Wang, D. Cui, K. Lv, Macromole-
cules 2008, 41, 1983–1988; e) N. Yu, M. Nishiura, X. Li, Z. Xi,
Z. Hou, Chem. Asian J. 2008, 3, 1406–1414; f) H. Zhang, Y.
Luo, Z. Hou, Macromolecules 2008, 41, 1064–1066; g) A.-S.
Rodriguesa, E. Kirillova, B. Vuilleminb, A. Razavic, J.-F. Carp-
entier, Polymer 2008, 49, 2039–2045.
[3] a) L. Zhang, T. Suzuki, Y. Luo, M. Nishiura, Z. Hou, Angew.
Chem. 2007, 119, 1941–1945; Angew. Chem. Int. Ed. 2007, 46,
1909–1913; b) Y. Luo, M. Nishiura, Z. Hou, J. Organomet.
Chem. 2007, 692, 536–544; c) Y. Yang, B. Liu, K. Lv, W. Gao,
D. Cui, X. Chen, X. Jing, Organometallics 2007, 26, 4575–4584;
d) Y. Yang, Q. Wang, D. Cui, J. Polym. Sci., Part A 2008, 46,
5251–5262; e) S. Li, W. Miao, T. Tang, W. Dong, X. Zhang, D.
Cui, Organometallics 2008, 27, 718–725; f) W. Gao, D. Cui, J.
Am. Chem. Soc. 2008, 130, 4984–4991.
3
H, CH(CH3)2), 1.30–1.34 (m, 12 H, CH(CH3)2), 1.36 (d, J(H,H)
= 6.9 Hz, 6 H, CH(CH3)2), 1.64 (br., β-CH2, THF), 2.78 (s, 6 H,
NMe2), 2.88 (br., 2 H, 13,14/22,23-H), 2.98 (sept, 3J(H,H) =
6.9 Hz, 1 H, 15-H), 3.22 (br., 2 H, 13,14/22,23-H), 3.67 (br., α-CH2,
THF), 5.78 (d, 3J(H,H) = 8.6 Hz, 1 H, 3-H), 6.32 (d, 3J(H,H) =
3
7.1 Hz, 1 H, 5-H), 6.72 (d, J(H,H) = 8.1 Hz, 2 H, o-C6H5NMe2),
3
3
6.83 (t, J(H,H) = 7.3 Hz, 1 H, p-C6H5NMe2), 7.11 (dd, J(H,H)
= 8.6, 3J(H,H) = 7.1 Hz, 1 H, 4-H), 7.23 (s, 2 H, 9,11-H), 7.27–7.33
(m, 5 H, 18,19,20-H, m-C6H5NMe2) ppm. 13C NMR (100 MHz,
C6D5Br, 298 K): δ = 0.0, 3.6, 23.0, 24.2, 24.5, 24.7, 25.8, 26.4, 27.9,
30.6, 34.6, 40.4, 67.5, 108.2, 112.8, 113.6, 116.8, 121.3, 125.1, 129.2,
134.4, 135.4, 137.2, 137.8, 139.7, 139.9, 142.3, 143.7, 146.7, 147.5,
149.9, 150.9, 154.3, 169.7 ppm. 19F NMR (376 MHz, C6D5Br,
298 K): δ = –132.4 (br. d, 3J(F,F) = 12.0 Hz, o-F), –162.7 (t, 3J(F,F)
3
= 21.0 Hz, p-F), –166.7 (t, J(F,F) = 18.9 Hz, m-F) ppm.
[4] L. Zhang, M. Nishiura, M. Yuki, Y. Luo, Z. Hou, Angew.
Chem. 2008, 120, 2682–2685; Angew. Chem. Int. Ed. 2008, 47,
2642–2645.
NMR Tube Reaction of 6a with AlMe3: The complex 6a (25 mg,
33 µmol) was dissolved in a NMR tube equipped with a young
Eur. J. Inorg. Chem. 2009, 4255–4264
© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjic.org
4263