C O M M U N I C A T I O N S
M. ComprehensiVe Asymmetric Catalysis; Jacobsen, E. N., Pfaltz, A.,
Yamamoto, H., Eds.; Springer: Heidelberg, Germany, 1999; pp 833-886.
(4) Studies reporting on the kinetics of catalytic reaction: (a) Mackenzie, P. B.;
Whelan, J.; Bosnich, B. J. Am. Chem. Soc. 1985, 107, 2046. (b) Åkermark,
B.; Zetterberg, K.; Hansson, S.; Krakenberger, B.; Vitagliano, A. J.
Organomet. Chem. 1987, 335, 133. (c) Ramdeehul, S.; Dierkes, P.; Aguado,
R.; Kamer, P. C. J.; van Leeuwen, P. W. N. M.; Osborn, J. A. Angew.
Chem., Int. Ed. 1998, 37, 3118. (d) Gais, H.-J.; Jagusch, T.; Spalthoff, N.;
Gerhards, F.; Frank, M.; Raabe, G. Chem.sEur. J. 2003, 9, 4202. Studies
reporting on the kinetics of stoichiometric amination of π-allyl Pd
complexes: (e) Vitagliano, A.; Åkermark, B. J. Organomet. Chem. 1988,
349, C22. (f) Kuhne, O.; Mayr, H. Angew Chem. Int. Ed. 1999, 38, 343.
(g) Amatore, C.; Ge´nin, E.; Jutand, A.; Mensah, L. Organometallics 2007,
26, 1875. Studies reporting on the kinetics of stoichiometric oxidative
addition of allyl esters to generate π-allyl Pd complexes: (h) Amatore, C.;
Jutand, A.; Meyer, G.; Mottier, L. Chem.sEur. J. 1999, 5, 466. (i) Amatore,
C.; Gamez, S.; Jutand, A. Chem.sEur. J. 2001, 7, 1273. (j) Amatore, C.;
Gamez, S.; Jutand, A.; Meyer, G.; Mottier, L. Electrochim. Acta 2001, 46,
3237. (k) Agenet, N.; Amatore, C.; Gamez, S.; Ge´rardin, H.; Jutand, A.;
Meyer, G.; Orthwein, C. ArkiVoc 2002, V, 92. (l) Amatore, C.; Bahsoun,
A. A.; Jutand, A.; Mensah, L.; Meyer, G.; Ricard, L. Organometallics 2005,
24, 1569.
(5) For a similar (but qualitative) trend, ascribed to an “ionic liquid effect”,
see: (a) Ross, J.; Chen, W.; Xu, L.; Xiao, J. Organometallics 2001, 20,
138. For a related acetate sequestering effect through H-bonding, that
suppresses rate, see: (b) Ross, J.; Xiao, J. Chem.sEur. J. 2003, 9, 4900.
(6) Brookhart, M.; Grant, B.; Volpe, A. F. Organometallics 1992, 11, 3920.
(7) (a) Winstein, S.; Klinedinst, P. E.; Robinson, G. C. J. Am. Chem. Soc.
1954, 76, 2597. (b) At present it is unclear whether the approximately linear
plots in Figure 1 are the early phases of a special salt effect (which should
progressively inflect to a normal salt effect) or the linear portion of a, rather
powerful, normal salt effect. Scheme 3 supports the former.
Figure 2. Selective acceleration of acetate (1a) over benzoate (1b) by
[NaBAr′F]. k1a/k1b estimated by competition of 1a/[13C]-1b for limiting 2.
Nonlinear regression for (iv)/(v) is of k1a/k1b ) ({k1a/k1b}0)((1 + a1ax)/(1
+ a1bx)). Note16 that k1a/k1b * kL(1a)/kL(1b)
.
Scheme 3. Impact of Cocatalytic NaBAr′F on Enantioselectivity21
(8) Crotyl acetate behaved analogously. See Supporting Information.
(9) An analogous conclusion was made by Jutand and co-workers, for Pd
catalysed allylic amination, but based on the kinetics of separate stoichio-
metric reactions (KOA and kNu), see reference 4g.
(10) Ligand association/dissociation equilibria are not implicated: the bidentate
dppf ligands (entries 11-13) give identical trends. Addition of 1 equiv
ligand v (entry 5) resulted in severe attenuation of turnover rate.
(11) Akermark, B.; Hansson, S.; Zetterberg, K.; Krakenberger, B.; Vitagliano,
A. Organometallics 1984, 3, 679.
(12) Pregosin has demonstrated (from 19F PGSE diffusion) that BAr′F engages
in “very modest but not zero ion pairing”, see: (a) Nama, D.; Butti, P.;
Pregosin, P. S. Organometallics 2007, 26, 4942. (b) Pregosin, P. S. Prog.
Nucl. Magn. Reson. Spectrosc. 2006, 49, 261.
and P(p-tolyl)3 (v), acetate 1a can be differentially accelerated (a1a/
a1b > 1) over benzoate 1b, by an order of magnitude.
(13) The approximation d[3]/dt ≈ kL(1 + a[NaBAr′F])[Pdtot][2] may only hold
for low [NaBAr′F] concentrations. See also ref 7b.
(14) (a) A mixture of 1a and (nominally) (L)2Pd, was generated by reaction of
[Pd2(allyl)2(OAc)2] with i and v (L/Pd ) 2;-78f21 °C). For the analogous
reaction with Cy3P, see: Yamamoto, T.; Saito, O.; Yamamoto, A. J. Am.
Chem. Soc., 1981, 103, 5600. The precatalyst mixture gave an identical kL
value for 1af3 to that obtained with [4(L)2][OTf]. (b)1H-NMR isotherm-
derived equilibrium constants for NaBAr′F + [4(L)2][OTf] ) NaOAc +
[4(L)2][BAr′F] are K ) 0.43 ( 0.11 (i), and K ) 193 ( 147 (v), see
Supporting Information.
Catalytic NaBAr′F is proposed to facilitate accelerated flux via
generation of [4][BAr′F],7,17 and thus a preliminary study18 was
conducted to investigate the impact of the degree of ion-pairing19
at the point of nucleophilic attack (kNu versus k′Nu, Scheme 2), on
the selectivity of an archetypal asymmetric allylation, Scheme 3.20
In summary, counterintuitive ligand influences on the rate of
Tsuji-Trost allylation5 (1 + 2 f 3) can arise through reversible
generation of a tight ion-pair ([4]+|[X]-) from a precomplexed
resting state, L2Pd(η2-1),22 Scheme 2. With appropriately electron-
donating ligands, accelerated flux can be achieved by modulating
the ion-pair partitioning with catalytic quantities of NaBAr′F
(Scheme 2, cycle B).14b,23 This process offers the potential to use
lower catalyst loadings and to improve slow allylation reactions. It
will also be an important consideration in chiral ligand design and
the optimization of enantioselectivity.19,20
(15) Reactions were substantially slower than in THF, see Supporting Informa-
tion, and proceeded with very approximately pseudo-zero-order kinetics,
as might be expected from a steady-state concentration of [2].
(16) For other examples of pseudo-zero-order competitive networks see: (a)
Ferretti, A. C.; Mathew, J. S.; Ashworth, I.; Purdy, M.; Brennan, C.;
Blackmond, D. G. AdV. Synth. Catal. 2008, 350, 1007. (b) Blackmond,
D. G.; Hodnett, N. S.; Lloyd-Jones, G. C. J. Am. Chem. Soc. 2006, 128,
7450. (c) Dominguez, B.; Hodnett, N. S.; Lloyd-Jones, G. C. Angew. Chem.,
Int. Ed. 2001, 40, 4289.
(17) Further evidence for a change in ion-pairing in 4+ at the point of
nucleophilic attack comes from competition between 2 (NaC(Me)E2) and
the less sterically hindered NaC(H)E2 for limiting 1a. Using more electron
rich ligands, the selectivity for 2 could be approximately doubled by addition
of 3.0 mM [NaBAr′F], see Supporting Information.
(18) NaBAr′F (3.0 mM) increased k1a/k1b (0.15 f 0.50) with [4(BINAP)][OTf].
(19) The generation of a less-intimate ion-pair (see ref 12) may also modulate
“memory effects”. For leading references: (a) Trost, B. M.; Bunt, R. C.
J. Am. Chem. Soc. 1996, 118, 235. (b) Lloyd-Jones, G. C.; Stephen, S. C.;
Fairlamb, I. J. S.; Martorell, A.; Dominguez, B.; Tomlin, P. M.; Murray,
M.; Fernandez, J. M.; Jeffery, J. C.; Riis-Johannessen, T.; Guerziz, T. Pure
Appl. Chem. 2004, 76, 589. (c) Svensen, N.; Fristrup, P.; Tanner, D.; Norrby,
P.-O. AdV. Synth. Catal. 2007, 349, 2631.
Acknowledgment. We thank AstraZeneca Global PR&D for
generous financial support of this project and John M. Brown FRS,
Oxford, for open exchange of information about ion-pairing.
Supporting Information Available: Preparation and characteriza-
tion of catalysts; kinetic data and analysis. This material is available
(20) Detrimental effects of halide on the selectivity of asymmetric allylation
are known, see for example: Clark, T. P.; Landis, C. R. J. Am. Chem. Soc.,
2003, 125, 11792.
(21) Previously reported to proceed in 30% ee with X ) Cl: Yamaguchi, M.;
Shima, T.; Yamagishi, T. Tetrahedron: Asymmetry 1991, 2, 663.
(22) Cation-stabilizing allylic substituents (for example, 1,1,3-Ar3) may decrease
kIR and/or kNu leading to a Pd-allyl species as resting state, see reference
4a.
(23) BAr′F, or analogous “non-interactive” (ref 12) anions are often employed
in systems propagating via contiguous cationic catalytic intermediates. The
results herein show that BAr′F can also be applied to catalytic cycles with
neutral and cationic intermediates.
References
(1) (a) Tsuji, J.; Takahashi, H.; Moriwaka, M. Tetrahedron Lett. 1965, 6, 4387.
(b) Trost, B. M.; Fullerton, T. J. J. Am. Chem. Soc. 1973, 95, 292.
(2) (a) Atkins, K. E.; Walker, W. E.; Manyik, R. M. Tetrahedron Lett. 1970,
11, 3821. (b) See reference 1 cited in ref 3a for an extensive list of reviews.
(3) Recent reviews: (a) Lu, Z.; Ma, S. Angew Chem., Int. Ed. 2007, 47, 258.
(b) Trost, B. M.; Lee, C. Catalytic Asymmetric Synthesis, 2nd ed.; Ojima,
I., Ed.; Wiley-VCH: New York, 2000; pp 593-649. (c) Pfaltz, A.; Lautens,
JA806278E
9
J. AM. CHEM. SOC. VOL. 130, NO. 44, 2008 14473