pubs.acs.org/joc
conventional methods via multistep syntheses, the reactions
Synthesis of Dibenzo[b, f ][1,4]oxazepin-11(10H)-ones
via Intramolecular Cyclocarbonylation Reactions
Using PdI2/Cytop 292 as the Catalytic System
often require rather stringent reaction conditions, and low yields
of the products were obtained in some cases.3 Therefore, it
seems desirable to develop a general and effective route to
synthesize medium-sized ring heterocycles.
Qian Yang,† Hong Cao,† Al Robertson,‡ and
Howard Alper*,†
The transition-metal-catalyzed carbonylation reaction is
an effective tool for organic synthesis. It provides convenient
and direct access to a large number of heterocycles.4 Cata-
lysts with added bulky, electron-rich phosphine ligands are
useful for some of these applications.5 During the past
several years, a novel class of tertiary phosphine ligands
based on a phospha-adamantane framework were success-
fully utilized for various palladium-catalyzed reactions6 and
for the rhodium-catalyzed hydroformylation of unsaturated
esters.7 They are readily made, stable to air, and inert to
decomposition and have stereoelectronic properties similar
to those of bulky phosphines. Furthermore, the ability to
alter the aryl moiety of the phospha-adamantane ligand
affords the opportunity to sterically and electronically fine-
tune the phosphonite and hence generates transition-metal
complexes with different catalytic potentials.
†Centre for Catalysis Research and Innovation,
Department of Chemistry, University of Ottawa, 10 Marie
Curie, Ottawa, Ontario K1N 6N5, Canada, and
‡Cytec Canada, Inc., 9061 Garner Road, Niagara Falls,
Ontario L2E 6S5, Canada
Received July 4, 2010
In 2005, a publication from our group demonstrated that
palladium-complexed dendrimers supported on silica are
efficient catalysts for the synthesis of medium-sized oxygen-,
nitrogen-, or sulfur-containing heterocycles (Scheme 1).8 In
light of this research, we investigated the intramolecular
cyclocarbonylation reactions of substituted 2-(2-iodophenoxy)-
anilines to evaluate and compare the in situ generated palla-
dium(II)-1,3,5,7-tetramethyl-6-phenyl-2,4,8-trioxa-6-phospha-
adamantane (Cytop 292, Figure 1) catalytic system with the
The intramolecular cyclocarbonylation of substituted 2-(2-
iodophenoxy)anilines was catalyzed by PdI2 and 1,3,5,7-
tetramethyl-6-phenyl-2,4,8-trioxa-6-phospha-adamantane
(Cytop 292) in an efficient manner. A series of substituted
dibenzo[b,f][1,4]oxazepin-11(10H)-ones were prepared in
good yields under mild reaction conditions.
(4) (a) Getzler, Y. D. Y. L.; Kundnani, V.; Lobkovsky, E. B.; Coates,
G. W. J. Am. Chem. Soc. 2004, 126, 6842. (b) Handbook of Organopalladium
Chemistry for Organic Synthesis; Negishi, E., Ed.; John Wiley & Sons: New York,
2002; Vol. 2. (c) Mahadevan, V.; Getzler, Y. D. Y. L.; Coates, G. W. Angew.
Chem., Int. Ed. 2002, 41, 2781. (d) El Ali, B.; Alper, H. Synlett 2000, 161. (e)
Cornils, B.; Herrmann, W. A. Applied Homogeneous Catalysis with Organo-
metallic Compounds; VCH: Weinheim, Germany, 1996. (f) Khumtaveeporn, K.;
Alper, H. Acc. Chem. Res. 1995, 28, 414 and references therein. (g) Colquhoun,
H. M.; Thompson, D. J.; Twigg, M. V. Carbonylation: Direct Synthesis of
Carbonyl Compounds; Plenum Press: New York, 1991.
(5) (a) Clarke, M. L. Tetrahedron Lett. 2004, 45, 4043. (b) Littke, A. F.;
Fu, G. C. Angew. Chem., Int. Ed. 2002, 41, 4176. (c) Yin, J.; Rainka, M. P.;
Zhang, X.; Buchwald, S. L. J. Am. Chem. Soc. 2002, 124, 1162. (d) Alcazar-
Roman, L. M.; Hartwig, J. F. J. Am. Chem. Soc. 2001, 123, 12905. (e) Littke,
A. F.; Dai, C.; Fu, G. C. J. Am. Chem. Soc. 2000, 122, 4020. (f) Littke, A. F.;
Fu, G. C. J. Org. Chem. 1999, 64, 10. (g) Littke, A. F.; Fu, G. C. Angew.
Chem., Int. Ed. 1999, 38, 2411. (h) Bei, X.; Turner, H. W.; Weinberg, W. H.;
Guram, A. S.; Petersen, L. J. Org. Chem. 1999, 64, 6797. (i) Wolfe, J. P.;
Buchwald, S. L. Angew. Chem., Int. Ed. 1999, 38, 2413. (j) Nishiyama, M.;
Yamamoto, T.; Koie, Y. Tetrahedron Lett. 1998, 39, 617. (k) Hammann,
B. C.; Hartwig, J. F. J. Am. Chem. Soc. 1998, 120, 7369. (l) Shen, W.
Terahedron Lett. 1997, 38, 5575. (m) Reddy, N. P.; Tanaka, M. Tetrahedron
Lett. 1997, 38, 4807.
(6) (a) McNulty, J.; Nair, J. J.; Capretta, A. Tetrahedron Lett. 2009, 50,
4087. (b) Gerristma, D.; Brenstrum, T.; McNulty, J.; Capretta, A. Tetra-
hedron Lett. 2004, 45, 8319. (c) Ohnmacht, S. A.; Brenstrum, T.; Bleicher, K.
H; McNulty, J.; Capretta, A. Tetrahedron Lett. 2004, 45, 5661. (d) Adjabeng,
G.; Brenstrum, T.; Frampton, C. S.; Robertson, A. J.; Hillhouse, J.;
McNulty, J.; Capretta, A. J. Org. Chem. 2004, 69, 5082. (e) Adjabeng, G.;
Brenstrum, T.; Wilson, J.; Frampton, C.; Robertson, A.; Hillhouse, J.;
McNulty, J.; Capretta, A. Org. Lett. 2003, 5, 953.
(7) (a) Clarke, M. L.; Roff, G. J. Chem.;Eur. J. 2006, 12, 7978. (b) Baber,
R. A.; Clarke, M. L.; Heslop, K. M.; Marr, A. C.; Orpen, A. G.; Pringle,
P. G.; Ward, A.; Zambrano-Williams, D. E. J. Chem. Soc., Dalton Trans.
2005, 1079.
Medium-sized heterocycles, especially seven- and eight-
membered ring compounds, are receiving significant atten-
tion because of the existence of their structural units in some
natural products.1 In particular, dibenzo-fused oxazepinones,
diazepinones, and azepinones are key elements for a number of
biologically active molecules. For example, several dibenzo-
[b,e][1,4]diazepin-11-one and dibenzo[b,e][1,4]diazepine deriva-
tives have been shown to have anti-arrhythmic/defibrillatory
activity.2 Although these heterocycles can be prepared by
(1) (a) Geronikaki, A. A.; Dearden, J. C.; Filimonov, D.; Galaeva, I.;
Garibova, T. L.; Gloriozova, T.; Krajneva, V.; Lagunin, A.; Macaev, F. Z.;
Molodavkin, G.; Poroikov, V. V.; Pogrebnoi, S. I.; Shepeli, F.; Voronina,
T. A.; Tsitlakidou, M.; Vlad, L. J. Med. Chem. 2004, 47, 2870. (b) Cutignano,
A.; Tramice, A.; De Caro, S.; Villani, G.; Cimino, G.; Fontana, A. Angew.
Chem., Int. Ed. 2003, 42, 2633. (c) Renneberg, D.; Dervan, P. B. J. Am. Chem.
Soc. 2003, 125, 5707. (d) Dutton, F. E.; Lee, B. H.; Johnson, S. S.; Coscarell,
E. M.; Lee, P. H. J. Med. Chem. 2003, 46, 2057. (e) Yoshida, H.; Shirakawa,
E.; Honda, Y.; Hiyama, T. Angew. Chem., Int. Ed. 2002, 41, 3247. (f) Zhan,
Z.-Y.; Dervan, P. B. Bioorg. Med. Chem. 2000, 8, 2467. (g) Hodge, C. N.;
Pierce, J. Bioorg. Med. Chem. Lett. 1993, 3, 1605.
(2) Levy, O.; Erez, M.; Varon, D.; Keinan, E. Bioorg. Med. Chem. Lett.
2001, 11, 2921.
(3) (a) Samet, A. V.; Kislyi, K. A.; Marshalkin, V. N.; Semenov, V. V.
Russ. Chem. Bull., Int. Ed. 2006, 55, 549. (b) Konstantinova, A. V.;
Gerasimova, T. N.; Kozlova, M. M.; Petrenko, N. I. Chem. Heterocycl.
Compd. 1989, 25, 451. (c) Nagarajan, K.; Venkateswarlu, A.; Kulkarni, C. L.;
€
Shah, R. Indian J. Chem. 1974, 12, 227. (d) Kunzle, F.; Schmutz, J. Helv.
Chim. Acta 1969, 52, 622.
(8) Lu, S.-M.; Alper, H. J. Am. Chem. Soc. 2005, 127, 14776.
DOI: 10.1021/jo101312z
r
Published on Web 08/26/2010
J. Org. Chem. 2010, 75, 6297–6299 6297
2010 American Chemical Society