12 Recent advance in catalytic asymmetric synthesis of a-hydroxy or amino
allyl phosphonates: (a) G. D. Joly and E. N. Jacobsen, J. Am. Chem.
Soc., 2004, 126, 4102; (b) X. Zhou, X. Liu, X. Yang, D. Shang, J. Xin
and X. Feng, Angew. Chem., Int. Ed., 2008, 47, 392; (c) J. P. Abell and
H. Yamamoto, J. Am. Chem. Soc., 2008, 130, 10521; (d) L. Albrecht, A.
Albrecht, H. Krawczyk and K. A. Jørgensen, Chem.–Eur. J., 2010, 16,
28; (e) K. Suyama, Y. Sakai, K. Matsumoto, B. Saito and T. Katsuki,
Angew. Chem., Int. Ed., 2010, 49, 797.
13 Allylphosphonates have been widely used in the preparation of dienes
and polyenes, an advantage of allylphosphonates in the olefination
over the corresponding phosphonium salts is exemplified by their
stereoselectivity and stereospecificity observed in the reactions: (a) B. E.
Maryanoff and A. B. Reitz, Chem. Rev., 1989, 89, 863; (b) R. S.
Edmundson, Chem. Funct. Groups, 1996, 4, 495; Condensation of
an allylic phosphonium ylide: (c) E. J. Corey and B. W. Erickson,
J. Org. Chem., 1974, 39, 821; Recent advance in the synthesis of densely
substituted 1,3-butadienes: (d) S. M. Date and S. K. Ghosh, Angew.
Chem., Int. Ed., 2007, 46, 386; Affording conjugated dienes with high
cis selectivity: (e) Q. Wang, M. El Khoury and M. Schlosser, Chem.–
Eur. J., 2000, 6, 420.
References
1 For general review on the organophosphorus oxide chemistry: (a) H.
Hays and D. J. Peterson, Organic Phosphorus Compounds, 1972, 3,
341; (b) A. K. Bhattacharya and G. Thyagarajan, Chem. Rev., 1981,
81, 415; (c) A. K. Bhattacharya and N. K. Roy, The Chemistry of
Organophosphorus Compounds, 1992, 2, 195; (d) T. Minami, Compre-
hensive Organic Functional Group Transformation, 1995, 2, 819; (e) T.
Minami, Comprehensive Organic Functional Group Transformations II,
2005, 853; (f) D. Enders, A. Saint-Dizier, M.-I. Lannou and A. Lenzen,
Eur. J. Org. Chem., 2005, 29; For arylphosphine oxides synthesis:
(g) C. A. Ramsden, Science of Synthesis, 2007, 31, 2035.
2 For recent reviews on phosphonic acids and their derivatives as
inhibitors: (a) K. Moonen, I. Laureyn and C. V. Stevens, Chem. Rev.,
2004, 104, 6177; (b) F. Palacios, C. Alonso and J. M. de los Santos,
Chem. Rev., 2005, 105, 899; (c) N. J. Wardle, S. W. A. Bligh and H. R.
Hudson, Curr. Org. Chem., 2005, 9, 1803; (d) L. Azema, R. Baron and
S. Ladame, Curr. Enzyme Inhib., 2006, 2, 61; (e) V. D. Romanenko and
V. P. Kukhar, Chem. Rev., 2006, 106, 3868.
3 (a) G. H. Birum, J. Org. Chem., 1974, 39, 209; (b) J. Oleksyszyn, L.
Subotkowska and P. Mastalerz, Synthesis, 1979, 985; (c) Mechanism
revised: M. Soroka, Liebigs Ann. Chem., 1990, 331; (d) H. R. Hudson,
F. Ismail, M. Pianka and C. W. Wan, Phosphorus, Sulfur Silicon Relat.
Elem., 2000, 164, 245; (e) P. Merino, E. Marques-Lopez and R. P.
Herrera, Adv. Synth. Catal., 2008, 350, 1195.
4 Pioneer example in the preparation of dialkyl allylphosphonate from
allyl halides and dialkylphosphite at reflux: (a) G. M. Kosolapoff, J. Am.
Chem. Soc., 1951, 73, 4040; Using (PhO)2P(OTMS): (b) R. Francke
and G. V. Roeschenthaler, Phosphorus Sulfur Relat. Elem., 1988, 36,
125; Modification employing TBAI/CsCO3 with monosubstituted allyl
bromide: (c) R. J. Cohen, D. L. Fox, J. F. Eubank and R. N. Salvatore,
Tetrahedron Lett., 2003, 44, 8617; Phenyl phosphorochloridite with
allyl halide: (d) I. Pergament and M. Srebnik, Org. Lett., 2001, 3, 217;
(e) H. Zhang, R. Tsukuhara, G. Tigyi and G. D. Prestwich, J. Org.
Chem., 2006, 71, 6061; Direct addition of P(OPh)3 to conjugated
imine catalyzed by SnCl4: (f) P. Van der Veken, I. El Sayed, J.
Joossens, C. V. Stevens, K. Augustyns and A. Haemers, Synthesis, 2005,
634.
14 Wittig olefination reaction and modifications involvingphosphoryl-
stabilized carbanions: B. E. Maryanoff and A. B. Reitz, Chem. Rev.,
1989, 89, 863.
15 (a) For selected publications on the Horner–Wadsworth–Emmons
reaction: W. S. Wadsworth, Jr, Organic Reactions, Wiley, New York,
1977, Vol. 25, pp 73; (b) E. L. Eliel, and S. H. Wilen, Stereochemistry
of Organic Compounds, Wiley, New York, 1994, Chapter 14.
16 (a) Recent advance in stereoselective allylphosphonate (phosphono
unsaturated esters) synthesis employing Baylis–Hillman adducts: W. R.
Schoen and W. H. Parsons, Tetrahedron Lett., 1988, 29, 5201; (b) T.
Janecki and R. Bodalski, Synthesis, 1990, 799; (c) D. Basavaiah
and S. Pandiaraju, Tetrahedron, 1996, 52, 2261; (d) M. Matziari,
D. Georgiadis, V. Dive and A. Yiotakis, Org. Lett., 2001, 3, 659;
(e) C. Muthiah, K. Senthil Kumar, J. J. Vittal and K. C. Kumara
Swamy, Synlett, 2002, 1787; (f) P. A. Badkar, N. P. Rath and C. D.
Spilling, Org. Lett., 2007, 9, 3619; (g) Typical condition: BSA, substrate,
dialkylphosphite in 1 : 1 : 1 ratio, heated for reflux for 2–4 days in
THF. The in situ formation of silyl phosphonates was often envisaged
as a key to enhance the nucleophilicity of the dialkylphosphites,
however, the Lewis acidic nature of silylating reagent may also
enhance the electrophilicity of carbonyls towards nucleophilic addition,
especially at higher temperature; (h) for the effect of protic acid on
alkylphosphonylation with conjugated imine: K. Moonen, E. Van
Meenen, A. Verwee and C. V. Stevens, Angew. Chem., Int. Ed., 2005,
44, 7407.
5 From vinylphosphonate via isomerization: base-catalyzed: (a) J. J.
Kiddle and J. H. Babler, J. Org. Chem., 1993, 58, 3572; Prototropic
equilibria of diethyl alkenylphosphonates: (b) J. P. Gerber, T. A. Modro,
C. C. P. Wagener and A. Zwierzak, Heteroat. Chem., 1991, 2, 643.
6 Using sulfone elimination strategy: Y. Vo-Quang, D. Carniato, L. Vo-
Quang, A. M. Lacoste, E. Neuzil and F. Le Goffic, J. Med. Chem.,
1986, 29, 579.
7 Pd-catalyzed hydrophosphorylation of monoallenes and 1,1-
disubstituted allenes: (a) C.-Q. Zhao, L.-B. Han and M. Tanaka,
Organometallics, 2000, 19, 4196; Highly substituted allenes do not
undergo the addition. 1,3-Dienes gave products through least hindered
reductive elimination: (b) F. Mirzaei, L.-B. Han and M. Tanaka,
Tetrahedron Lett., 2001, 42, 297; Atom-economical preparation of
related allyl phosphonic acids from concentrated hypophosphorous
acid and stereodefined trisubstituted allyl alcohols (no b-substituted
allyl alcohol example) using a Pd2dba3-xantphos catalyst at 85–110 ◦C,
please see: (c) K. Bravo-Altamirano and J.-L. Montchamp, Tetrahedron
Lett., 2007, 48, 5755.
8 Epoxidation of allylphosphonate: (a) T. R. Boehlow and C. D. Spilling,
Tetrahedron Lett., 1996, 37, 2717; (b) M. Mitchell, L. Qaio and C.-H.
Wong, Adv. Synth. Catal., 2001, 343, 596.
9 Dihydroxylation and regioselective amination: (a) T. Yamagishi, K.
Fujii, S. Shibuya and T. Yokomatsu, Synlett, 2004, 2505; With AD-mix
reagents: (b) T. Yokomatsu, T. Yamagishi, T. Sada, K. Suemune and
S. Shibuya, Tetrahedron, 1998, 54, 781; (c) T. Yamagishi, K. Fujii, S.
Shibuya and T. Yokomatsu, Tetrahedron, 2006, 62, 54.
10 Highly stereo- and regiocontrolled cyclopent-annulation: (a) G. Agnel
and E. Negishi, J. Am. Chem. Soc., 1991, 113, 7424; Asymmetric
Michael addition reaction: (b) S. E. Denmark and J.-H. Kim, J. Org.
Chem., 1995, 60, 7535; Regioselective alkylation and olefination:
(c) B. S. Lee, J. M. Gil and D. Y. Oh, Tetrahedron Lett., 2001, 42,
2345.
11 As key intermediates in drug synthesis: (a) D. A. Evans and B. T.
Connell, J. Am. Chem. Soc., 2003, 125, 10899; (b) A. A. Fokin, A. G.
Yurchenko, V. N. Rodionov, P. A. Gunchenko, R. I. Yurchenko, A.
Reichenberg, J. Wiesner, M. Hintz, H. Jomaa and P. R. Schreiner, Org.
Lett., 2007, 9, 4379.
17 Stobbe-type condensations providing Z-allyl dialkylphosphonates
analogous to phosphonylation of Baylis–Hillman adducts: (a) H. G.
McFadden, R. L. N. Harris and C. L. D. Jenkins, Aust. J. Chem., 1987,
40, 1619; (b) D. J. Martin, M. Gordon and C. E. Griffin, Tetrahedron,
1967, 23, 1831.
18 Although it received much less attention, we found that acrylonitrile
derived Baylis–Hillman adducts also undergo phosphonylation, pro-
viding the corresponding dialkyl phosphonates with an electronically
activated E-allyl dialkylphosphonates, see ref. 16c.
19 Metathesis strategy: (a) A. K. Chatterjee, T.-L. Choi and R. H.
Grubbs, Synlett, 2001, 1034; (b) A. K. Chatterjee, D. P. Sanders and
R. H. Grubbs, Org. Lett., 2002, 4, 1939; (c) M. J. Comin, D. A.
Parrish, J. R. Deschamps and V. E. Marquez, Org. Lett., 2006, 8,
705; (d) J. Moiese, S. Arseniyadis and J. Cossy, Org. Lett., 2007, 9,
1695.
20 (a) C.-Y. Ho and T. F. Jamison, Angew. Chem., Int. Ed., 2007, 46, 782;
(b) S.-S. Ng, C.-Y. Ho and T. F. Jamison, J. Am. Chem. Soc., 2006, 128,
11513.
21 General reviews on Ni-catalyzed multicomponents coupling: (a) J.
Montgomery, Acc. Chem. Res., 2000, 33, 467; (b) J. Montgomery,
Angew. Chem., Int. Ed., 2004, 43, 3890; (c) R. M. Moslin, K. Miller-
Moslin and T. F. Jamison, Chem. Commun., 2007, 4441; (d) S.-S. Ng,
C.-Y. Ho, K. D. Schleicher and T. F. Jamison, Pure Appl. Chem., 2008,
80, 929.
22 (a) G. A. Olah, Aromatic allylation and Related Reactions, Wiley-
Interscience, New York, 1964, Vol. 2, Part 1; (b) R. M. Roberts,
and A. A. Khalaf, Friedel–Crafts Alkylation Chemistry. A Century
of Discovery, Marcel Dekker, New York, 1984; (c) G. A. Olah,
R. Krishnamurti, G. K. S. Prakash, Friedel–Crafts Alkylations in
Comprehensive Organic Synthesis, ed. B. M. Trost, I. Flemin, Pergamon
3486 | Org. Biomol. Chem., 2010, 8, 3480–3487
This journal is
The Royal Society of Chemistry 2010
©