1742 Bioconjugate Chem., Vol. 21, No. 10, 2010
Scutaru et al.
(20) Hawkins, P. C., Skillman, A. G., Warren, G. L., Ellingson,
B. A., and Stahl, M. T. (2010) Conformer generation with
OMEGA: Algorithm and validation using high quality structures
from the Protein Databank and Cambridge Structural Database.
J. Chem. Inf. Model. 50, 572–84.
(21) Wolber, G., and Langer, T. (2005) LigandScout: 3D phar-
macophores derived from protein-bound ligands and their use
as virtual screening filters. J. Chem. Inf. Model. 45, 160–169.
(22) Wolber, G., Dornhofer, A. A., and Langer, T. (2006) Efficient
overlay of small organic molecules using 3D pharmacophores.
J. Comput.-Aided Mol. Des. 20, 773–788.
LITERATURE CITED
(1) Gillies, E. R., and Frechet, J. M. J. (2005) Dendrimers and
dendritic polymers in drug delivery. Drug DiscoVery Today 10,
35–43.
(2) Wolinsky, J. B., and Grinstaff, M. W. (2008) Therapeutic and
diagnostic applications of dendrimers for cancer treatment. AdV.
Drug DeliVery ReV. 60, 1037–1055.
(3) D’Emanuele, A., and Attwood, D. (2005) Dendrimer-drug
interactions. AdV. Drug DeliVery ReV. 57, 2147–2162.
(4) Caminade, A. M., Laurent, R., and Majoral, J. P. (2005)
Characterization of dendrimers. AdV. Drug DeliVery ReV. 57,
2130–2146.
(23) Hay, R. J. (1988) The seed stock concept and quality-control
for cell-lines. Anal. Biochem. 171, 225–237.
(5) Takakura, Y., Mahato, R. I., and Hashida, M. (1998) Extrava-
sation of macromolecules. AdV. Drug DeliVery ReV. 34, 93–108.
(6) Noguchi, Y., Wu, J., Duncan, R., Strohalm, J., Ulbrich, K., Akaike,
T., and Maeda, H. (1998) Early phase tumor accumulation of
macromolecules: A great difference in clearance rate between tumor
and normal tissues. Jpn. J. Cancer Res. 89, 307–314.
(7) Majoros, I. J., Myc, A., Thomas, T., Mehta, C. B., and Baker,
J. R. (2006) PAMAM dendrimer-based multifunctional conjugate
for cancer therapy: Synthesis, characterization, and functionality.
Biomacromolecules 7, 572–579.
(8) Choi, Y., Thomas, T., Kotlyar, A., Islam, M. T., and Baker,
J. R. (2005) Synthesis and functional evaluation of DNA-
assembled polyamidoamine dendrimer clusters for cancer cell-
specific targeting. Chem. Biol. 12, 35–43.
(9) Thomas, T. P., Majoros, I. J., Kotlyar, A., Kukowska-Latallo,
J. F., Bielinska, A., Myc, A., and Baker, J. R. (2005) Targeting
and inhibition of cell growth by an engineered dendritic
nanodevice. J. Med. Chem. 48, 3729–3735.
(10) Ozegowski, W., and Krebs, D. (1963) Amino acid antagonists.
III. ω-[Bis-(ꢀ-chloroethyl)amino-2-benzimidazolyl]propionic and
-butyric acids as potential cytostats. J. Prakt. Chemie 20, 178–
186.
(11) Keating, M. J., Bach, C., Yasothan, U., and Kirkpatrick, P.
(2008) Bendamustine. Nat. ReV. Drug DiscoVery 7, 473–474.
(12) Eichbaum, M. H. R., Schuetz, F., Khbeis, T., Lauschner, I.,
Foerster, F., Sohn, C., and Schneeweiss, A. (2007) Weekly
administration of bendamustine as salvage therapy in metastatic
breast cancer: Final results of a phase II study. Anti-Cancer Drugs
18, 963–968.
(13) Kratz, F., Beyer, U., Roth, T., Schutte, M. T., Unold, A.,
Fiebig, H. H., and Unger, C. (1998) Albumin conjugates of the
anticancer drug chlorambucil: Synthesis, characterization, and
in vitro efficacy. Arch. Pharm. 331, 47–53.
(14) Beyer, U., Roth, T., Schumacher, P., Maier, G., Unold, A.,
Frahm, A. W., Fiebig, H. H., Unger, C., and Kratz, F. (1998)
Synthesis and in vitro efficacy of transferrin conjugates of the
anticancer drug chlorambucil. J. Med. Chem. 41, 2701–2708.
(15) Matsumura, Y., and Maeda, H. (1986) A new concept for
macromolecular therapeutics in cancer-chemotherapy - mecha-
nism of tumoritropic accumulation of proteins and the antitumor
agent smancs. Cancer Res. 46, 6387–6392.
(16) Sinn, H., Schrenk, H. H., Friedrich, E. A., Schilling, U., and
Maier-Borst, W. (1990) Design of compounds having an
enhanced tumor uptake, using serum-albumin as a carrier. Part
1. Int. J. Rad. Appl. Instrum. B 17, 819–827.
(17) Fuchs, S., Kapp, T., Otto, H., Scho¨neberg, T., Franke, P., Gust,
R., and Schlu¨ter, A. D. (2004) A surface-modified dendrimer
set for potential application as drug delivery vehicles: Synthesis,
in vitro toxicity, and intracellular localization. Chem.sEur. J.
10, 1167–1192.
(18) Giraud, I., Rapp, M., Maurizis, J. C., and Madelmont, J. C.
(2002) Synthesis and in vitro evaluation of quaternary ammonium
derivatives of chlorambucil and melphalan, anticancer drugs
designed for the chemotherapy of chondrosarcoma. J. Med.
Chem. 45, 2116–2119.
(19) Bergel, F., and Stock, J. A. (1954) Cyto-active amino-acid
and peptide derivatives.1. Substituted phenylalanines. J. Chem.
Soc. 2409–2417.
(24) Bernhardt, G., Reile, H., Birnbo¨ck, H., Spruss, T., and
Scho¨nenberger, H. (1992) Standardized kinetic microassay to
quantify differential chemosensitivity on the basis of proliferative
activity. J. Cancer Res. Clin. Oncol. 118, 35–43.
(25) Reile, H., Birnbock, H., Bernhardt, G., Spruss, T., and
Scho¨nenberger, H. (1990) Computerized determination of growth
kinetic curves and doubling times from cells in microculture.
Anal. Biochem. 187, 262–267.
(26) Werner, W., Letsch, G., and Ihn, W. (1987) Hydrolysis
products of the cancerostatic drug cytostasan (Bendamustin).
Pharmazie 42, 272–273.
(27) Klausner, Y. S., and Bodansky, M. (1972) Coupling reagents
in peptide synthesis. Synthesis 453–463.
(28) Sheehan, J. C., and Ledis, S. L. (1973) Total synthesis of a
monocyclic peptide lactone antibiotic, Etamycin. J. Am. Chem.
Soc. 95, 875–879.
(29) Sheehan, J. C., Preston, J., and Cruicksh., P. A. (1965) A rapid
synthesis of oligopeptides derivates without isolation of inter-
mediates. J. Am. Chem. Soc. 87, 2492–2493.
(30) Kapp, T., Dullin, A., and Gust, R. (2010) Platinum(II)-
dendrimer conjugates: synthesis and investigations on cytotox-
icity, cellular distribution, platinum release, DNA, and protein
binding. Bioconjugate Chem. 21, 328–337.
(31) Testa, U., Pelosi, E., and Peschle, C. (1993) The transferrin
receptor. Crit. ReV. Oncogen. 4, 241–276.
(32) Tajmir-Riahi, H. A. (2007) An overview of drug binding to
human serum albumin: Protein folding and unfolding. Sci. Iran.
14, 87–95.
(33) Zhou, Q. J., Bi, Y. J., Xiang, J. F., Tang, Y. L., Yang, Q. F.,
and Xu, G. Z. (2008) Investigation on a potential targeting drug
delivery system consisting of folate, mitoxantrone and human
serum albumin. Chin. J. Chem. 26, 1385–1389.
(34) Wagner, E., Cotten, M., Mechtler, K., Kirlappos, H., and
Birnstiel, M. L. (1991) DNA-binding transferrin conjugates as
functional gene-delivery agents - synthesis by linkage of polyl-
ysine or ethidium homodimer to the transferrin carbohydrate
moiety. Bioconjugate Chem. 2, 226–231.
(35) Khandare, J., and Minko, T. (2006) Polymer-drug conjugates:
Progress in polymeric prodrugs. Prog. Polym. Sci. 31, 359–397.
(36) Khandare, J. J., Chandna, P., Wang, Y., Pozharov, V. P., and
Minko, T. (2006) Novel polymeric prodrug with multivalent
components for cancer therapy. J. Pharmacol. Exp. Ther. 317,
929–937.
(37) Duncan, R., Hume, I. C., Yardley, H. J., Flanagan, P. A.,
Ulbrich, K., Subr, V., and Strohalm, J. (1991) Macromolecular
prodrugs for use in targeted cancer chemotherapy: Melphalan
covalently coupled to N-(2-hydroxypropyl)methacrylamide co-
polymers. J. Controlled Release 16, 121–36.
(38) Shukla, G., Tiwari, A. K., Kumar, N., Sinha, D., Mishra, P.,
Chandra, H., and Mishra, A. K. (2008) Polyethylene glycol
conjugates of methotrexate and melphalan: Synthesis, radiola-
beling and biologic studies. Cancer Biother. Radiopharm. 23,
571–580.
(39) Chang, S. Y., Alberts, D. S., Farquhar, D., Melnick, L. R.,
Walson, P. D., and Salmon, S. E. (1978) Hydrolysis and protein-
binding of melphalan. J. Pharm. Sci. 67, 682–684.
(40) Bosanquet, A. G. (1985) Stability of melphalan solutions
during preparation and storage. J. Pharm. Sci. 74, 348–351.