Chemistry & Biology
a-L-Fucosynthases
´
Fialova, P., Carmona, A.T., Robina, I., Ettrich, R., Sedmera, P., Prikrylova, V.,
´
Murshudov, G.N., Vagin, A.A., and Dodson, E.J. (1997). Refinement of macro-
molecular structures by the maximum-likelihood method. Acta Crystallogr.
D Biol. Crystallogr. 53, 240–255.
´
Petraskova-Husakova, L., and Kren, V. (2005). Glycosyl azide—a novel
´
´
substrate for enzymatic transglycosylations. Tetrahedron Lett. 46, 8715–8718.
Okuyama, M., Mori, H., Watanabe, K., Kimura, A., and Chiba, S. (2002).
a-glucosidase mutant catalyzes ‘‘a-glycosynthase’’-type reaction. Biosci.
Biotechnol. Biochem. 66, 928–933.
Hancock, S.M., Vaughan, M.D., and Withers, S.G. (2006). Engineering of
glycosidases and glycosyltransferases. Curr. Opin. Chem. Biol. 10, 509–519.
Honda, Y., and Kitaoka, M. (2006). The first glycosynthase derived from an
Osanjo, G., Dion, M., Drone, J., Solleux, C., Tran, V., Rabiller, C., and Tellier, C.
(2007). Directed evolution of the alpha-L-fucosidase from Thermotoga mari-
tima into an alpha-L-transfucosidase. Biochemistry 46, 1022–1033.
inverting glycoside hydrolase. J. Biol. Chem. 281, 1426–1431.
Honda, Y., Fushinobu, S., Hidaka, M., Wakagi, T., Shoun, H., Taniguchi, H.,
and Kitaoka, M. (2008). Alternative strategy for converting an inverting glyco-
side hydrolase into a glycosynthase. Glycobiology 18, 325–330.
Overend, W.G. (1972). In The Carbohydrates, 2nd Edition, W. Pigman and
D. Horton, eds. (New York and London: Academic Press), pp. 316–332.
Juaristi, E., and Cuevas, G. (1992). Recent studies of the anomeric effect.
Perugino, G., Trincone, A., Rossi, M., and Moracci, M. (2004). Oligosaccharide
Tetrahedron 48, 5019–5087.
synthesis by glycosynthases. Trends Biotechnol. 22, 31–37.
Kelley, L.A., and Sternberg, M.J.E. (2009). Protein structure prediction on the
Perugino, G., Cobucci-Ponzano, B., Rossi, M., and Moracci, M. (2005). Recent
advances in the oligosaccharide synthesis promoted by catalytically engi-
neered glycosidases. Adv. Synth. Catal. 347, 941–950.
web: a case study using the Phyre server. Nat. Protoc. 4, 363–371.
Kim, Y.W., Lee, S.S., Warren, R.A., and Withers, S.G. (2004). Directed evolu-
tion of a glycosynthase from Agrobacterium sp. increases its catalytic activity
dramatically and expands its substrate repertoire. J. Biol. Chem. 279,
42787–42793.
Seeberger, P.H. (2008). Automated oligosaccharide synthesis. Chem. Soc.
Rev. 37, 19–28.
Shallom, D., Leon, M., Bravman, T., Ben-David, A., Zaide, G., Belakhov, V., Sho-
ham, G., Schomburg, D., Baasov, T., and Shoham, Y. (2005). Biochemical char-
acterization and identification of the catalytic residues of a family 43 beta-D-
xylosidase from Geobacillus stearothermophilus T-6. Biochemistry 44, 387–397.
Kunz, H., Pfrengle, W., Ru¨ ck, K., and Sager, W. (1991). Stereoselective
synthesis of L-amino acids via Strecker and Ugi reactions on carbohydrate
templates. Synthesis 1991, 1039–1042.
Leatherbarrow, R.J. (1992). GraFit version 3.0 (Staines, U.K.: Erithacus Soft-
ware Ltd.).
Sulzenbacher, G., Bignon, C., Nishimura, T., Tarling, C.A., Withers, S.G., Hen-
rissat, B., and Bourne, Y. (2004). Crystal structure of Thermotoga maritima
alpha-L-fucosidase. Insights into the catalytic mechanism and the molecular
basis for fucosidosis. J. Biol. Chem. 279, 13119–13128.
Leslie, A.G.W. (1992). Recent changes to the MOSFLM package for process-
ing film and image plate data. Joint CCP4/ESF-EACBM Newsletter 26, 27–33.
Tarling, C.A., He, S., Sulzenbacher, G., Bignon, C., Bourne, Y., Henrissat, B.,
and Withers, S.G. (2003). Identification of the catalytic nucleophile of the family
29 alpha-L-fucosidase from Thermotoga maritima through trapping of a cova-
lent glycosyl-enzyme intermediate and mutagenesis. J. Biol. Chem. 278,
47394–47399.
Lin, H., Tao, H., and Cornish, V.W. (2004). Directed evolution of a glycosyn-
thase via chemical complementation. J. Am. Chem. Soc. 126, 15051–15059.
Ly, H.D., and Withers, S.G. (1999). Mutagenesis of glycosidases. Annu. Rev.
Biochem. 68, 487–522.
Ma, B., Simala-Grant, J.L., and Taylor, D.E. (2006). Fucosylation in prokaryotes
Umekawa, M., Huang, W., Li, B., Fujita, K., Ashida, H., Wang, L.X., and Yama-
moto, K. (2008). Mutants of Mucor hiemalis endo-beta-N-acetylglucosamini-
dase show enhanced transglycosylation and glycosynthase-like activities.
J. Biol. Chem. 283, 4469–4479.
and eukaryotes. Glycobiology 16, 158R–184R.
Mackenzie, L.F., Wang, Q., Warren, R.A.J., and Withers, S.G. (1998). Glyco-
synthases: mutant glycosidases for oligosaccharide synthesis. J. Am. Chem.
Soc. 120, 5583–5584.
Vanhooren, P.T., and Vandamme, E.J. (1999). L-Fucose: occurrence, physio-
logical role, chemical, enzymatic and microbial synthesis. J. Chem. Technol.
Biotechnol. 74, 479–497.
Malet, C., and Planas, A. (1998). From beta-glucanase to beta-glucansyn-
thase: glycosyl transfer to alpha-glycosyl fluorides catalyzed by a mutant
endoglucanase lacking its catalytic nucleophile. FEBS Lett. 440, 208–212.
Varki, A. (1993). Biological roles of oligosaccharides: all of the theories are
McCarter, J.D., and Withers, S.G. (1994). Mechanisms of enzymatic glycoside
correct. Glycobiology 3, 97–130.
hydrolysis. Curr. Opin. Struct. Biol. 4, 885–892.
Wada, J., Honda, Y., Nagae, M., Kato, R., Wakatsuki, S., Katayama, T.,
Taniguchi, H., Kumagai, H., Kitaoka, M., and Yamamoto, K. (2008). 1,2-
alpha-l-Fucosynthase: A glycosynthase derived from an inverting alpha-
glycosidase with an unusual reaction mechanism. FEBS Lett. 582, 3739–3743.
McCoy, A.J., Grosse-Kunstleve, R.W., Adams, P.D., Winn, M.D., Storoni, L.C.,
and Read, R.J. (2007). Phaser Crystallographic Software. J. Appl. Crystallogr.
40, 658–674.
Williams, S.J., and Withers, S.G. (2000). Glycosyl fluorides in enzymatic reac-
Moracci, M., Trincone, A., Perugino, G., Ciaramella, M., and Rossi, M. (1998).
Restoration of the activity of active-site mutants of the hyperthermophilic beta-
glycosidase from Sulfolobus solfataricus: dependence of the mechanism on
the action of external nucleophiles. Biochemistry 37, 17262–17270.
tions. Carbohydr. Res. 327, 27–46.
Williams, G.J., Zhang, C., and Thorson, J.S. (2007). Expanding the promiscuity
of a natural-product glycosyltransferase by directed evolution. Nat. Chem.
Biol. 3, 657–662.
Murata, T., Morimoto, S., Zeng, X., Watanabe, S., and Usui, T. (1999). Enzy-
matic synthesis of alpha-L-fucosyl-N-acetyllactosamines and 30-O-alpha-L-
fucosyllactose utilizing alpha-L-fucosidases. Carbohydr. Res. 320, 192–199.
Zechel, D.L., and Withers, S.G. (2001). Dissection of nucleophilic and acid-
base catalysis in glycosidases. Curr. Opin. Chem. Biol. 5, 643–649.
1108 Chemistry & Biology 16, 1097–1108, October 30, 2009 ª2009 Elsevier Ltd All rights reserved