A. Helal et al. / Tetrahedron 66 (2010) 9925e9932
9931
equation used in the determination of relative quantum yields is
shown as follows:
diluted with water and extracted with EtOAc. The organic layer was
dried over anhydrous sodium sulfate and concentrated. The residue
was purified by column chromatography (SiO2, EtOAcehexane-1:4)
to give 3 (143 mg, 85% yield). Mp: 104e105ꢃC (CH2Cl2 ehexane); 1H
ꢀ
ꢁ
Qx=Qst ¼ ðFx=FstÞ ꢀ ðAst=AxÞ ꢀ n2x=ns2t
NMR (400 MHz, CDCl3)
d
7.06 (t, J¼7.3 Hz, 1H), 7.16 (dt, J¼5.3, 1.8 Hz,
Where Q is the quantum yields; F is the integrated area under the
corrected emission spectrum; A is the absorbance at the excitation
wavelength; n is the refractive index of the solution; and the sub-
1H), 7.29 (t, J¼7.8 Hz, 2H), 7.38 (t, J¼7.3 Hz, 1H), 7.46 (q, J¼7.3 Hz,
2H), 7.59 (d, J¼7.8 Hz, 1H), 7.71 (d, J¼6.8 Hz, 1H), 7.90 (d, J¼7.4 Hz,
2H), 8.02 (s, 1H), 8.52 (d, J¼4.3 Hz, 1H), 8.84 (d, J¼8.6 Hz, 1H), 12.54
(s, 1H, NH); 13C NMR (100 MHz, CDCl3)
d 117.1, 119.8, 121.2, 121.4,
scripts
x and st refer to the unknown, and the standard,
respectively.
123.2, 123.5, 127.9, 128.7, 128.9, 131.4, 131.7, 135.9, 137.1, 137.2, 149.4,
151.3, 155.0, 166.7, 169.2. Anal. Calcd for C21H15N3OS$CH2Cl2: C,
59.73; H, 3.87; N, 9.50; S, 7.25. Found: C, 60.10; H, 3.94; N, 9.53; S,
6.99.
4.3. Synthesis
4.3.1. 2(20-Nitrophenyl)-4-pyridylthiazole (6a). A mixture of
4
(100 mg, 0.55 mmol) and 5a (185 mg, 0.66 mmol) in ethanol
(15 mL) was refluxed for 4 h. The solvent was removed under vacuo
and the residue was washed with water, neutralized with 1 N
NaOH, and extracted with EtOAc. The organic layer was dried over
anhydrous sodium sulfate and concentrated. The residue was pu-
rified using column chromatography (SiO2, EtOAcehexane-1:2) to
give 6a (124 mg, 80% yield). Mp: 88ꢃC (CH2Cl2 ehexane); 1H NMR
4.3.5. Zn2þe1 complex. A mixture of 1 (100 mg, 0.24 mmol) and Zn
(ClO4)2 $ 6H2O (110 mg, 0.29 mmol) in ethanolewater (v/v 9:1,
5 mL) was refluxed for 3 h. The mixture was cooled to room tem-
perature and the precipitated complex was filtered off. The filtered
cake was washed thoroughly with water, ethanol, and diethyl ether,
and dried under vacuum to provide the complex (85 mg, 74% yield).
HR-FAB mass: calcd for (C21H16O2N3S2Zn) 469.9975. Found:
469.9972.
(400 MHz, CDCl3)
d
7.51 (dt, J¼7.8, 1.5 Hz, 1H), 7.58 (dt, J¼7.8, 1.5 Hz,
1H), 7.74e7.70 (m, 3H), 8.01 (d, J¼7.8 Hz,1H), 8.18 (s, 1H), 8.25e8.22
(m, 1H), 8.53 (d, J¼4.4 Hz, 1H); 13C NMR (100 MHz, CDCl3)
d 119.0,
Acknowledgements
121.7, 123.3, 125.6, 126.9, 130.6, 131.1, 132.1, 134.4, 137.5, 149.1, 151.8,
156.1, 161.9. Anal. Calcd for C14H9N3O2S: C, 59.35; H, 3.20; N, 14.83;
S, 11.32. Found: C, 59.14; H, 3.11; N, 14.79; S, 11.40.
This research was supported by the Basic Science Research
Program through the National Research Foundation of Korea (NRF),
and funded by the Ministry of Education, Science and Technology
(20100010070). A.H. was also supported by the Research Institute
of Industrial Technology at Kyungpook National University.
4.3.2. Chemosensor 1. A solution of 6a (200 mg, 0.70 mmol) in
methanol (10 mL) was hydrogenated with 10% Pd/C under 1 atm of
hydrogen for 6 h. After the catalyst was removed by filtration the
filtrate was concentrated and dried to give the crude amine 7a. To
the solution of the crude amine (7a, 120 mg, 0.47 mmol) in pyridine
(20 mL) p-toluenesulfonyl chloride (112 mg, 0.59 mmol) was added
and refluxed for 8 h. The mixture was diluted with water and
extracted with EtOAc. The organic layer was dried over anhydrous
sodium sulfate and concentrated. The residue was purified by col-
umn chromatography (SiO2, EtOAcehexane-1:2) to give 1 (154 mg,
80% yield). Mp: 165ꢃC (CH2Cl2ehexane); 1H NMR (400 MHz, CDCl3)
Supplementary data
Supplementary data related to this article can be found online
References and notes
1. deSilva, A. P.; Gunaratne, H. Q. N.; Gunnlaugsson, T.; Huxley, A. J. M.; McCoy, C.
P.; Rademacher, J. T.; Rice, T. E. Chem. Rev. 1997, 97, 1515.
2. Mason, W. T. Fluorescent and Luminescent Probes for Biological Activity;
Academic: San Diego, 1999.
3. Grynkiewicz, G.; Poenie, M.; Tsien, R. Y. J. Biol. Chem. 1985, 260, 3440.
4. (a) Haugland, R. P. Handbook of Fluorescent Probes and Research Chemicals;
Molecular Probes: Eugene, 1996; (b) Hirano, T.; Kikuchi, K.; Urano, Y.; Nagano, T.
J. Am. Chem. Soc. 2002, 124, 6555; (c) Mizukami, S.; Okada, S.; Kimura, S.; Ki-
kuchi, K. Inorg. Chem. 2009, 48, 7630; (d) Komatsu, T.; Urano, Y.; Fujikawa, Y.;
Kobayashi, T.; Kojima, H.; Terai, T.; Hanaoka, K.; Nagano, T. Chem. Commun.
2009, 7015; (e) Zhang, X.; Hayes, D.; Smith, S. J.; Friedle, S.; Lippard, S. J. J. Am.
Chem. Soc. 2008, 130, 15788; (f) Nolan, E. M.; Lippard, S. J. Acc. Chem. Res. 2009,
42, 193.
d
2.27 (s, 3H, CH3), 7.08 (d, J¼8.3 Hz, 3H), 7.32 (t, J¼7.8 Hz, 2H), 7.61
(d, J¼8.3 Hz, 2H), 7.64 (d, J¼8.3 Hz, 1H), 7.72 (d, J¼8.3 Hz, 1H), 7.91
(dt, J¼7.7, 1.3 Hz, 1H), 8.13 (s, 1H), 8.23 (d, J¼7.8 Hz, 1H), 8.65 (d,
J¼4.4 Hz, 1H), 12.33 (s, 1H, NH); 13C NMR (100 MHz, CDCl3)
d 21.5,
116.6, 120.1, 120.2, 121.1, 123.5, 123.8, 127.2, 128.7, 129.5, 131.2, 136.1,
136.4, 138.0, 143.7, 149.5, 151.2, 154.7, 168.0. Anal. Calcd for
C21H17N3O2S2: C, 61.89; H, 4.20; N, 10.31; S, 15.74. Found: C, 61.75;
H, 4.24; N, 10.25; S, 15.67.
4.3.3. Chemosensor 2. Tothesolutionof thecrude amine 7b(120mg,
0.48 mmol) in pyridine (20 mL) p-toluenesulfonyl chloride (112 mg,
0.59 mmol) was added and refluxed for 8 h. The mixture was diluted
with water and extracted with EtOAc. The organic layer was dried
over anhydrous sodium sulfate and concentrated. The residue was
purified by column chromatography (SiO2, EtOAcehexane-1:9) to
give 2(172mg, 88%yield). Mp:144e145ꢃC(CH2Cl2ehexane);1H NMR
5. (a) Lippard, S. J.; Berg, J. M. Principles of Bioinorganic Chemistry; University
Science Books: Mill Valley, 1994; (b) Sensi, S. L.; Canzoniero, L. M. T.; Yu, S. P.;
Ying, H. S.; Koh, J. Y.; Kerchner, G. A.; Choi, D. W. J. Neurosci. 1997, 17, 9554; (c)
Coleman, J. E. Curr. Opin. Chem. Biol. 1998, 2, 222; (d) Kikuchi, K. Chem. Soc. Rev.
2010, 39, 2048.
6. (a) Frederickson, C. J. Int. Rev. Neurobiol. 1989, 31, 145; (b) Frederickson, C. J.;
Koh, J. Y.; Bush, A. I. Nat. Rev. Neurosci. 2005, 6, 449.
7. Gyulkhandanyan, A. V.; Lu, H. F.; Lee, S. C.; Bhattacharjee, A.; Wijesekara, N.;
Fox, J. E. M.; MacDonald, P. E.; Chimienti, F.; Dai, F. F.; Wheeler, M. B. J. Biol.
Chem. 2008, 283, 10184.
(400MHz, CDCl3)
d
2.17 (s, 3H, CH3), 6.95(m, 3H), 7.21 (t, J¼8.0Hz,1H),
8. Edstrom, A. M. L.; Malm, J.; Frohm, B.; Martellini, J. A.; Giwercman, A.; Morgelin,
M.; Cole, A. M.; Sorensen, O. E. J. Immunol. 2008, 181, 3413.
7.29 (t, J¼7.2 Hz,1H), 7.34 (s, 1H), 7.41 (t, J¼7.6 Hz, 2H), 7.55e7.50 (m,
3H), 7.64 (d, J¼8.8 Hz,1H), 7.88 (d, J¼8.0 Hz, 2H),12.35 (s,1H, NH); 13C
9. (a) Zalewski, P. D.; Forbes, I. J.; Betts, W. H. Biochem. J. 1993, 296, 403; (b)
Mikata, Y.; Yamanaka, A.; Yamashita, A.; Yano, S. Inorg. Chem. 2008, 47, 7295.
10. (a) Burdette, S. C.; Walkup, G. K.; Spingler, B.; Tsien, R. Y.; Lippard, S. J. J. Am.
Chem. Soc. 2001, 123, 7831; (b) Gee, K. R.; Zhou, Z. L.; Qian, W. J.; Kennedy, R.
J. Am. Chem. Soc. 2002, 124, 776.
11. Taki, M.; Watanabe, Y.; Yukio, Y. Tetrahedron Lett. 2009, 50, 1345.
12. (a) Van Dongen, E.; Dekkers, L. M.; Spijker, K.; Meijer, E. W.; Klomp, L. W. J.;
Merkx, M. J. Am. Chem. Soc. 2006, 128, 10754; (b) Bozym, R. A.; Thompson, R. B.;
Stoddard, A. K.; Fierke, C. A. ACS Chem. Biol. 2006, 1, 103; (c) Evers, T. H.; Ap-
pelhof, M. A. M.; de Graaf-Heuvelmans, P.; Meijer, E. W.; Merkx, M. J. Mol. Biol.
2007, 374, 411; (d) Evers, T. H.; Appelhof, M. A. M.; Meijer, E. W.; Merkx, M.
NMR (100 MHz, CDCl3)
d 21.5, 112.1, 120.1, 120.3, 123.7, 126.2, 127.2,
128.7, 128.8, 129.3, 129.5, 131.0, 133.1, 136.1, 136.5, 143.6, 155.0, 167.8.
Anal. Calcd for C22H18N2O2S2: C, 65.00; H, 4.46; N, 6.89; S, 15.78.
Found: C, 64.84; H, 4.36; N, 6.87; S, 15.58.
4.3.4. Chemosensor 3. To the solution of the crude amine 7a
(120 mg, 0.47 mmol) in pyridine (20 mL) benzoyl chloride (80 mg,
0.56 mmol) was added and refluxed for 8 h. The mixture was