898
R. Palin et al. / Bioorg. Med. Chem. Lett. 21 (2011) 892–898
11. Gunthorpe, M.; Chizh, B. Drug Discovery Today 2009, 14, 56.
12. Sammes, P. G.; Thetford, D. J. Chem. Soc., Perkin Trans. 1989, 655.
13. Levy, L. M.; Gonzalo, G.; Gotor, V. Tetrahedron Asymmetry 2004, 15, 2051.
14. CHO cells transfected with human TRPV1 are loaded with Ca2+ sensitive dye. If
TRPV1 is activated by an agonist, extracellular Ca2+ can flow through the open
channel and stimulate intracellular fluorescence. Conversely, if the TRPV1
channel is exposed to the agonist capsaicin, in the presence of antagonism
from the test compound, the channel will remain closed and intracellular
fluorescence will not occur. In this way the same TRPV1 transfected cell line
and assay can be used to search for both agonists and antagonists. Results are
an average of at least two independent experiments with three replicates at
each concentration.
into animal studies. Both compounds were able to attenuate the
acute inflammatory thermal response in the rat CFA assay. How-
ever, dose related increases in body temperature in rats were ob-
served although this did tolerate out over several days. Most
TRPV1 antagonists described to date cause a modest increase in
body temperature in preclinical studies.19 However, the magnitude
and duration of temperature elevation appears dependant on the
PK profile and modality specific to blockade of TRPV1 activation.20
Given AMG-517 elevates temperature in humans8d and subse-
quently has been withdrawn from clinical development, it will be
interesting to see the clinical outcomes of future trials21 with other
TRPV1 antagonists to understand whether the hyperthermia liabil-
ity can be managed either with anti-pyretics or through shortening
the half-life of the compounds.
15. Cheung, W. S.; Calvo, R. R.; Tounge, B. A.; Zhang, S.-P.; Stone, D. R.; Brandt, M.
R.; Hutchinson, T.; Flores, C. M.; Player, M. R. Bioorg. Med. Chem. Lett. 2008, 18,
4569.
16. Aqueous solubilities were determined using
a
medium-throughput
adaptation of shake-flask methodology. 10 mM solution of the test
a
A
compound in DMSO was added to 0.05 M phosphate buffered saline pH 7.4
such that the final concentration of DMSO was 2%. The resultant mixture
was then vortex mixed (1500 rpm) for 24 0.5 h at 21 2 °C. After mixing,
the resultant solution/suspension was filtered under vacuum using a filter
Acknowledgements
plate (Millipore Multiscreen HTS, 0.4 lM). The concentration of the
compound in the filtrate was determined by High Performance Liquid
Chromatography (HPLC) running a generic acid gradient method with UV
detection at 230 nm. Peak areas from analysis of the diluted filtrates were
quantified by comparison to a calibration line prepared by injecting onto the
HPLC three different volumes of a 50 lM solution of the test compound in
DMSO. Solubilities were determined in duplicate for each test compound
and average values reported.
The work described here was conducted between November
2006 and December 2007. We would like to thank our colleagues
in the Analytical section for structure and purity determination
of all compounds.
17. PERCH software Version 1/2005, PERCH Solutions Ltd, Kuopio, Finland.
18. Methodology adapted from Vellani, V.; Mapplebeck, S.; Moriondo, A.; Davis, J.
B.; McNaughton, P. A. J. Physiol. 2001, I, 813–825. Primary cultures of rat dorsal
root ganglion neurones were prepared from adult Wistar rats. Standard whole-
cell patch clamp recordings were made from neurones on days 2–4 in culture.
The neurones were exposed to capsaicin (500 nM) applied through a local
perfusion system for 1 s, repeated every 30 s. Capsaicin evoked an inward
current which typically showed a brief period of runup in amplitude before
stabilizing. Once the amplitude was stable, test compounds were applied
through the local perfusion system. Compounds were applied until the
amplitude was judged to have plateaued over at least three successive
capsaicin applications.
19. (a) Gavva, N. R.; Bannon, A. W.; Hovland, D. N., Jr.; Lehto, S. G.; Klionsky, L.;
Surapaneni, S.; Immke, D. C.; Henley, C.; Arik, L.; Bak, A.; Davis, J.; Ernst, N.;
Hever, G.; Kuang, R.; Shi, L.; Tamir, R.; Wang, J.; Wang, W.; Zajic, G.; Zhu, D.;
Norman, M. H.; Louis, J.-C.; Magal, E.; Treanor, J. J. S. J. Pharmacol. Exp. Ther.
2007, 323, 128; (b) Gavva, N. R.; Bannon, A. W.; Surapaneni, S.; Hovland, D. N.,
Jr.; Lehto, S. G.; Gore, A.; Juan, T.; Deng, H.; Han, B.; Klionsky, L.; Kuang, R.; Le,
A.; Tamir, R.; Wang, J.; Youngblood, B.; Zhu, D.; Norman, M. H.; Magal, E.;
Treanor, J. J. S.; Louis, J.-C. J. Neurosci. 2007, 27, 3366; (c) Swanson, D. M.; Dubin,
A. E.; Shah, C.; Nasser, N.; Chang, L.; Dax, S. L.; Jetter, M.; Bitenbucher, J. G.; Liu,
C.; Mazur, C.; Lord, B.; Gonzales, L.; Hoey, K.; Rizzolio, M.; Bogenstaetter, M.;
Codd, E. E.; Lee, D. H.; Zhang, S.-P.; Chaplan, S. R.; Carruthers, N. I. J. Med. Chem.
2005, 48, 1857.
References and notes
1. Caterina, M. J.; Schumacher, M. A.; Tominaga, M.; Rosen, T. A.; Levine, J. D.;
Julius, D. Nature 1997, 389, 816.
2. (a) Ross, R. A. Br. J. Pharmacol. 2003, 140, 790; (b) Shin, J.; Cho, H.; Hwang, S. W.;
Jung, J.; Shin, C. Y.; Lee, S.-Y.; Kim, S. H.; Lee, M. G.; Choi, Y. H.; Kim, J.; Haber, N.
A.; Reichling, D. B.; Khasar, S.; Levine, J. D.; Oh, U. Proc. Natl. Acad. Sci. 2002, 99,
10150.
3. Willis, W. D. Exp. Brain Res. 2009, 96, 5.
4. Caterina, M. J.; Leffler, A.; Malmberg, A. B.; Martin, W. J.; Trafton, J.; Petersen-
Zeitz, K. R.; Koltzenburg, M.; Basbaum, A. I.; Julius, D. Science 2000, 288, 5464.
5. (a) Matthews, P. J.; Aziz, Q.; Facer, P.; Davis, J. B.; Thompson, D. G.; Anand, P.
Eur. J. Gastroenterol. Hepatol. 2004, 16, 897; (b) Lu, Y.; Fei, Y.; Hao, L.; Feng-Yu,
L.; Ji-Sheng, H.; Guo-Gang, X.; You, W. Mol. Pain 2008, 4, 61.
6. Szallasi, A.; Appendino, G. J. Med. Chem. 2004, 47, 2717.
7. Kym, P. R.; Kort, M. E.; Hutchins, C. W. Biochem. Pharmacol. 2009, 78, 211.
8. (a) Gunthorpe, M. J.; Hannan, S. L.; Smart, D.; Jerman, J. C.; Arpino, S.; Smith, G.
D.; Brough, S.; Wright, J.; Egerton, J.; Lappin, S. C.; Holland, V. A.; Winborn, K.;
Thompson, M.; Rami, H. K.; Randall, A.; Davis, J. B. J. Pharmacol. Exp. Ther. 2007,
321, 1183; (b) Surowy, C. S.; Neelands, T. R.; Bianchi, B. R.; McGaraughty, S.; El
Kouhen, R.; Han, P.; Chu, K. L.; McDonald, H. A.; Vos, M.; Niforatos, W.; Bayburt,
E. K.; Gomtsyan, A.; Lee, C.-H.; Honore, P.; Sullivan, J. P.; Jarvis, M. F.; Faltynek,
C. R. J. Pharmacol. Exp. Ther. 2008, 326, 879; (c) Charrua, A.; Cruz, C. D.;
Narayanan, S.; Gharat, L.; Gullapalli, S.; Cruz, F.; Avelino, A. J. Urol. 2009, 181,
379; (d) Gavva, N. R.; Treanor, J. J. S.; Garami, A.; Fang, L.; Surapaneni, S.;
Akrami, A.; Alvarez, F.; Bak, A.; Darling, M.; Gore, A.; Jang, G. R.; Kesslak, J. P.; Ni,
L.; Norman, M. H.; Palluconi, G.; Rose, M. J.; Salfi, M.; Tan, E.; Romanovsky, A.
A.; Banfield, C.; Davar, G. Pain 2008, 136, 202.
20. (a) Garami, A.; Shimansky, Y. P.; Pakai, E.; Oliveira, D. L.; Gavva, N. R.;
Romanovsky, A. A. J. Neurosci. 2010, 30, 1435; (b) Lehto, S. G.; Tamir, R.; Deng,
H.; Klionsky, L.; Kuang, R.; Le, A.; Lee, D.; Louis, J. C.; Magal, E.; Manning, B. H.;
Rubino, J.; Surapaneni, S.; Tamayo, N.; Wang, T.; Wang, J.; Wang, J.; Wang, W.;
Youngblood, B.; Zhang, M.; Zhu, D.; Norman, M. H.; Gavva, N. R. J. Pharmacol.
Exp. Ther. 2008, 326, 218.
9. Valenzano, K. J.; Grant, E. R.; Wu, G.; Hachicha, M.; Schmid, L.; Tafesse, L.; Sun,
Q.; Rotshteyn, Y.; Francis, J.; Limberis, J.; Malik, S.; Whittemore, E. R.; Hodges,
D. J. Pharmacol. Exp. Ther. 2003, 306, 377.
21. Rami, H. K.; Gunthorpe, M. J. Drug Discovery Today: Ther. Strateg. 2004, 1, 97.
10. Park, H.-G.; Choi, J.-Y.; Kim, M.-H.; Choi, S.-H.; Park, M.-K.; Lee, J.; Suh, Y.-G.;
Cho, H.; Oh, U.; Kim, H.-D.; Joo, Y. H.; Shin, S. S.; Kim, J. K.; Jeong, Y. S.; Koh, H.-
J.; Park, Y.-H.; Jew, S.-S. Bioorg. Med. Chem. Lett. 2005, 15, 631.