Macromolecules
ARTICLE
’ ACKNOWLEDGMENT
(25) Ercole, F.; Davis, T. P.; Evans, R. A. Polym. Chem. 2010, 1, 37–54.
(26) Stoll, R. S.; Peters, M. V.; Kuhn, A.; Helices, S.; Goddard, R.;
Buhl, M.; Thiele, C. M.; Hecht, S. J. Am. Chem. Soc. 2009, 131, 357–367.
(27) Masiero, S.; Lena, S.; Pieraccini, S.; Spada, G. P. Angew. Chem.,
Int. Ed. 2008, 47, 3184–3187.
(28) Yamada, M.; Kondo, M.; Mamiya, J.; Yu, Y.; Kinoshita, M.;
Barrett, C. J.; Ikeda, T. Angew. Chem., Int. Ed. 2008, 47, 4986–4988.
(29) Koumura, N.; Kudo, M.; Tamoki, N. Langmuir 2004, 20,
9897–9990.
This research was supported by a Grant-in-Aid for Science
Research (B) (22350049) and Kyoto University Global COE
Program “International Center for Integrated Research and Ad-
vanced Education in Materials Science” from the Ministry of
Education, Culture, Sports, Science, and Technology, Japan, and
The Kurata Memorial Hitachi Science and Technology Foundation.
We are grateful to Mr. Tomoyuki Ohnishi at Kyoto University for
measurement of DLS.
(30) Furusho, Y.; Tanaka, Y.; Maeda, T.; Ikeda, M.; Yashima, E.
Chem. Commun. 2007, 3174–3176.
(31) Fujii, T.; Shiotsuki, M.; Inai, Y.; Sanda, F.; Masuda, T. Macro-
molecules 2007, 40, 7079–7088.
’ REFERENCES
(32) Khan, A.; Hecht, S. Chem.—Eur. J. 2006, 12, 4764–4774.
(33) Zhao, H.; Sanda, F.; Masuda, T. Polymer 2006, 47, 2596–2602.
(34) Mayer, S.; Zentel, R. Prog. Polym. Sci. 2001, 26, 1973–2013.
(35) Bꢀerubꢀe, M.; Poirier, D. Org. Lett. 2004, 6, 3127–3130.
(36) ten Brink, G.; Vis, J. M.; Arends, I. W. C. E.; Sheldon, R. A.
Tetrahedron 2002, 58, 3977–3983.
(1) Reviews: (a) Yashima, E.; Maeda, K.; Iida, H.; Furusho, Y.; Nagai,
K. Chem. Rev. 2009, 109, 6102–6211. (b) Hill, D. J.; Mio, M. J.; Prince,
R. B.; Hughes, T. S.; Moore, J. S. Chem. Rev. 2001, 101, 3893–4011.
(c) Nakano, T.; Okamoto, Y. Chem. Rev. 2001, 101, 4013–4038.
(2) Reviews: (a) David, B. A.; Serrano, J.; Sierra, T.; Veciana, J.
J. Polym. Sci., Part A: Polym. Chem. 2006, 44, 3161–3174. (b) Suginome,
M.; Ito, Y. Adv. Polym. Sci. 2004, 171, 77–136. (c) Cornelissen, J. J. L. M.;
Rowan, A. E.; Nolte, R. J. M.; Sommerdijk, N. A. J. M. Chem. Rev. 2001,
101, 4039–4070.
(3) Reviews: (a) Shiotsuki, M.; Sanda, F.; Masuda, T. Polym. Chem.,
in press. DOI: 10.1039/c0py00333f. (b) Masuda, T. J. Polym. Sci., Part A:
Polym. Chem. 2007, 45, 165–180. (c) Aoki, T.; Kaneko, T.; Teraguchi,
M. Polymer 2006, 47, 4867–4892.
(37) Anspon, H. D. Org. Synth. 1955, 3, 711–712.
(38) We measured the 13C NMR spectrum of poly(1bꢀ2a) in CDCl3
(50 mM) to confirm the purity of the polymer chain. One broad signal
assignable to ꢀCtCꢀ was observed around 80.1 ppm. No peak assign-
able to ꢀCtCꢀCtCꢀ was observed around 74 ppm (e.g.,
PhꢀCtCꢀCtCꢀPh 74.2 ppm). Consequently, it is concluded that
oxidative acetylene coupling, a typical side reaction of the Sonogashiraꢀ
Hagihara coupling, does not take place during the polymerization, and the
present polymer does not contain diacetylene units. The relatively low
molecular weights ofthe polymers may be caused by a small deviation from
equivalency between the diiode monomers and diyne monomers due to
the small scale of the polymerization (0.30 mmol).
(4) Reviews: (a) Kane-Maguire, L. A. P.; Wallace, G. G. Chem. Soc.
Rev. 2010, 39, 2545–2576. (b) Hoeben, F. J. M.; Jonkheijim, P.; Meijer,
E. W.; Schenning, A. P. H. J. Chem. Rev. 2005, 105, 1491–1546.
(5) Review: Ajayaghosh, A.; Praveen, V. K. Acc. Chem. Res. 2007, 40,
644–656.
(39) The DLS measurements were also performed for CH2Cl2
solutions (0.1 wt %) of poly(1aꢀ2a) and poly(1cꢀ2a) (Figure S3 of
the Supporting Information). Particles with Rh values of 585 and 477 nm
were detected, respectively. These two polymers also seem to form
aggregates at this concentration. On the contrary, these two polymers
did not show the CD signals in CH2Cl2 [c = 0.030 mM ((1.24 to 1.56) ꢁ
10ꢀ3 wt %)] attributable to the aggregates. It is presumed that this is due
to the difference in sample concentrations between DLS and CD
measurements. The concentrations of the DLS samples were 65ꢀ80
times higher than those of the CD samples. Because of the different
requirements of sample concentrations, we could not obtain the data of
DLS and CD at the same concentration.
(40) Prince, R. B.; Brunsyeld, L.; Meijer, E. W.; Moore, J. S. Angew.
Chem., Int. Ed. 2000, 39, 228–230.
(41) Prince, R.; Saven, J. G.; Wolynens, P. G.; Moore, J. S. J. Am.
Chem. Soc. 1999, 121, 3114–3121.
(42) Aggregation also seems to contribute to the thermal stability in
(6) Reviews: (a) Bunz, U. H. F. Macromol. Rapid Commun. 2009,
30, 772–805. (b) Smaldone, R. A.; Moore, J. S. Chem.—Eur. J. 2008,
14, 2650–2657. (c) Bunz, U. H. F. Adv. Polym. Sci. 2005, 177, 1–52.
(7) Fukuhara, G.; Inoue, Y. J. Am. Chem. Soc. 2011, 133, 768–770.
(8) Tamura, K.; Miyabe, T.; Iida, H.; Yashima, E. Polym. Chem. 2011,
2, 91–98.
(9) Fukuhara, G.; Inoue, Y. Chem.—Eur. J. 2010, 16, 7859–7864.
(10) Smaldone, R. A.; Moore, J. S. J. Am. Chem. Soc. 2007, 129,
5444–5450.
(11) Ikeda, M.; Furusho, Y.; Okoshi, K.; Tanahara, S.; Maeda, K.;
Nishio, S.; Mori, T.; Yashima, E. Angew. Chem., Int. Ed. 2006, 45,
6491–6495.
(12) Abe, H.; Masuda, N.; Waki, M.; Inouye, M. J. Am. Chem. Soc.
2005, 127, 16189–16196.
(13) Yamamoto, T.; Yamada, T.; Nagata, Y.; Suginome, M. J. Am.
Chem. Soc. 2010, 132, 7889–7901.
(14) Terada, K.; Masuda, T.; Sanda, F. J. Polym. Sci., Part A: Polym.
Chem. 2009, 47, 2596–2602.
(15) Maeda, K.; Tanaka, K.; Morino, K.; Yashima, E. Macromolecules
2007, 40, 6783–6785.
(16) Kakuchi, R.; Shimada, R.; Tago, Y.; Sakai, R.; Satoh, T.;
Kakuchi, T. J. Polym. Sci., Part A: Polym. Chem. 2010, 48, 1683–1689.
(17) Kakuchi, R.; Kodama, T.; Shimada, R.; Tago, Y.; Sakai, R.;
Satoh, T.; Kakuchi, T. Macromolecules 2009, 42, 3892–3897.
(18) Thomas, S. W, III; Joly, G. D.; Swager, T. M. Chem. Rev. 2007,
107, 1339–1386.
(19) Li, C.; Guo, Y.; Lv, J.; Xu, J.; Li, Y.; Wang, S.; Liu, H.; Zhu, D.
J. Polym. Sci., Part A: Polym. Chem. 2007, 45, 1403–1412.
(20) Zhao, X.; Schanze, K. S. Langmuir 2006, 22, 4856–4862.
(21) Arnt, L.; Tew, G. N. Macromolecules 2004, 37, 1283–1288.
(22) Liu, R.; Sogawa, H.; Shiotsuki, M.; Masuda, T.; Sanda, F.
Polymer 2010, 51, 2255–2263.
the case of poly(1bꢀ2a).
(43) Fujiki, M. Macromol. Rapid Commun. 2001, 22, 539–563.
(44) Gore, P. R.; Wheeler, O. H. J. Org. Chem. 1961, 26, 3295–3298.
(45) Moniruzzaman, M.; Talbot, J. D. R.; Sabey, C. J.; Fernando,
G. F. J. Appl. Polym. Sci. 2006, 100, 1103–1112.
(46) Adisa, B.; Bruce, D. A. J. Phys. Chem. B 2005, 109, 7548–7556.
(47) Adisa, B.; Bruce, D. A. J. Phys. Chem. B 2005, 109, 19952–19959.
(48) Lee, O. S.; Saven, J. G. J. Phys. Chem. B 2004, 108, 11988–11994.
(49) Halgren, T. A. J. Comput. Chem. 1996, 17, 490ꢀ519. The
molecular mechanics calculation was carried out with Wavefunc-
tion, Inc., Spartan ’08 Macintosh.
(23) Liu, R.; Shiotsuki, M.; Masuda, T.; Sanda, F. Macromolecules
2009, 42, 6115–6122.
(24) Reviews: (a) Seki, T. Bull. Chem. Soc. Jpn. 2007, 80, 2084–2109.
(b) Natansohn, A.; Ronchon, P. Chem. Rev. 2002, 102, 4139–4175.
(c) Tamai, N.; Miyasaka, H. Chem. Rev. 2000, 100, 1875–1890.
3345
dx.doi.org/10.1021/ma200281e |Macromolecules 2011, 44, 3338–3345