Journal of the American Chemical Society
COMMUNICATION
(4) Sia, S. K.; Carr, P. A.; Cochran, A. G.; Malashkevich, V. N.; Kim,
P. S. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 14664.
(5) (a) Miller, S. J.; Grubbs, R. H. J. Am. Chem. Soc. 1995, 117, 5855. (b)
Miller, S. J.; Blackwell, H. E.; Grubbs, R. H. J. Am. Chem. Soc. 1996, 118, 9606.
(6) Adding “reversible” perturbations to the peptide backbone in the
form of pseudo-Pro has proven to be a valuable strategy for synthesizing
“difficult” sequences. See: (a) Haack, T.; Mutter, M. Tetrahedron Lett.
1992, 33, 1589. (b) W€ohr, T.; Mutter, M. Tetrahedron Lett. 1995,
36, 3847. (c) Mutter, M.; Nefzi, A.; Sato, T.; Sun, X.; Wahl, F.; W€ohr, T.
Pept. Res. 1995, 8, 145. (d) W€ohr, T.; Wahl, F.; Nefzi, A.; Rohwedder, B.;
Sato, T.; Sun, X.; Mutter, M. J. Am. Chem. Soc. 1996, 118, 9218.
(7) Protection of the peptide backbone with the N-(2-hydroxy-4-
methoxybenzyl) (Hmb) group has also been shown to aid the synthesis
of aggregation-prone peptide sequences. See: (a) Johnson, T.; Quibell,
M.; Owen, D.; Sheppard, R. C. J. Chem. Soc., Chem. Commun. 1993, 369.
(b) Hyde, C.; Johnson, T.; Owen, D.; Quibell, M.; Sheppard, R. C. Int. J.
Pept. Protein Res. 1994, 43, 431. (c) Quibell, M.; Turnell, W. G.; Johnson,
T. J. Org. Chem. 1994, 59, 1745. (d) Quibell, M.; Packman, L. C.;
Johnson, T. J. Am. Chem. Soc. 1995, 117, 11656.
(8) Another widely used approach to the problem of “difficult”
sequences involves the synthesis of the corresponding O-acyl
isopeptides. See: (a) Sohma, Y.; Sasaki, M.; Hayashi, Y.; Kimura, T.; Kiso,
Y. Chem. Commun. 2004, 124. (b) Mutter, M.; Chandravarkar, A.; Boyat, C.;
Lopez, J.; Dos Santos, S.; Mandal, B.; Mimna, R.; Murat, K.; Patiny, L.;
Saucꢀede, L.; Tuchscherer, G. Angew. Chem., Int. Ed. 2004, 43, 4172.
(c) Carpino, L. A.; Krause, E.; Sferdean, C. D.; Sch€umann, M.; Fabian,
H.; Bienert, M.; Beyermann, M. Tetrahedron Lett. 2004, 45, 7519. (d)
Sohma, Y.; Hayashi, Y.; Kimura, M.; Chiyomori, Y.; Taniguchi, A.; Sasaki,
M.; Kimura, T.; Kiso, Y. J. Pept. Sci. 2005, 11, 441. (e) Dos Santos, S.;
Chandravarkar, A.; Mandal, B.; Mimna, R.; Murat, K.; Saucꢀede, L.; Tella, P.;
Tuchscherer, G.; Mutter, M. J. Am. Chem. Soc. 2005, 127, 11888.
(f) Taniguchi, A.; Sohma, Y.; Kimura, M.; Okada, T.; Ikeda, K.; Hayashi,
Y.; Kimura, T.; Hirota, S.; Matsuzaki, K.; Kiso, Y. J. Am. Chem. Soc. 2006,
128, 696. (g) Coin, I.; D€olling, R.; Krause, E.; Bienert, M.; Beyermann, M.;
Sferdean, C. D.; Carpino, L. A. J. Org. Chem. 2006, 71, 6171.
(9) (a) Li, X.; Danishefsky, S. J. J. Am. Chem. Soc. 2008, 130, 5446. (b)
Jones, G. O.; Li, X.; Hayden, A. E.; Houk, K. N.; Danishefsky, S. J. Org. Lett.
2008, 10, 4093. (c) Li, X.; Yuan, Y.; Berkowitz, W. F.; Todaro, L. J.;
Danishefsky, S. J. J. Am. Chem. Soc. 2008, 130, 13222. (d) Li, X.; Yuan, Y.;
Kan, C.; Danishefsky, S. J. J. Am. Chem. Soc. 2008, 130, 13225. (e) Li, X.;
Danishefsky, S. J. Nat. Protoc. 2008, 3, 1666. (f) Zhu, J.; Wu, X.; Danishefsky,
S. Tetrahedron Lett. 2009, 50, 577. (g) Wu, X.; Li, X.; Danishefsky, S. J.
Tetrahedron Lett. 2009, 50, 1523. (h) Yuan, Y.; Zhu, J.; Li, X.; Wu, X.;
Danishefsky, S. J. Tetrahedron Lett. 2009, 50, 2329. (i) Wu, X.; Yuan, Y.; Li,
X.; Danishefsky, S. J. Tetrahedron Lett. 2009, 50, 4666. (j) Stockdill, J.; Wu,
X.; Danishefsky, S. J. Tetrahedron Lett. 2009, 50, 5152. (k) Rao, Y.; Li, X.;
Danishefsky, S. J. J. Am. Chem. Soc. 2009, 131, 12924. (l) Wu, X.; Stockdill,
J.; Wang, P.; Danishefsky, S. J. J. Am. Chem. Soc. 2010, 132, 4098.
(10) See the SI for further mechanistic discussion.
Figure 1. Selected 600 MHz NOESY data for (a) constrained peptide
32 and (b) linear peptide 34. The data were obtained for 4.7 mM peptide
samples at 4 °C in D2O (pH 3.6ꢀ3.8, not corrected for deuterium) with
a 250 ms mixing time.
’ ASSOCIATED CONTENT
S
Supporting Information. Experimental procedures and
b
analytical data for new compounds. This material is available free
’ AUTHOR INFORMATION
Corresponding Author
(11) See the SI for further discussion of substrate scope.
’ ACKNOWLEDGMENT
(12) Thomas, E. W.; Rynbrandt, R. H.; Zimmermann, D. C.; Bell,
L. T.; Muchmore, C. R.; Yankee, E. W. J. Org. Chem. 1989, 54, 4535.
(13) Corey, E. J.; Reichard, G. A. Tetrahedron Lett. 1993, 34, 6973.
(14) Since the identity of the deprotected material could not be
confirmed by further structural characterization, we synthesized 35
independently by iterative solution-phase couplings. Although the linear
heptapeptide remained in solution during HPLC purification, the
lyophilized material was insoluble in aqueous and organic solvents.
(15) Tickler, A. K.; Clippingdale, A. B.; Wade, J. D. Protein Pept. Lett.
2004, 11, 377.
(16) For a conceptually related approach thought to disrupt inter-
molecular forces by promoting “internal solubilization” using polyethy-
lene glycol-based protecting groups, see: (a) Mutter, M.; Mutter, H.;
Uhmann, R.; Bayer, E. Biopolymers 1976, 15, 917. (b) Zier, A.; Ryan, D.;
Mutter, M. Tetrahedron Lett. 1994, 35, 1039. (c) Zinieris, N.; Zikos, C.;
Ferderigos, N. Tetrahedron Lett. 2006, 47, 6861. (d) Kocsis, L.;
Bruckdorfer, T.; Orosz, G. Tetrahedron Lett. 2008, 49, 7015.
This work was supported by the NIH (CA28824 to S.J.D.).
P.K.P. was supported by a postdoctoral fellowship (PF-11-014-
01-CDD) from the American Cancer Society. The authors thank
Dr. George Sukenick, Ms. Hui Fang, and Ms. Sylvi Rusli of the NMR
Core Facility at SKI for MS and NMR assistance. Dr. John Decatur of
the NMR facility at Columbia University is gratefully acknowledged
for NMR assistance. We also thank Professors Ann McDermott,
Tom Muir, and Pavel Nagorny for advice and helpful discussions. We
thank Ms. Rebecca Wilson for valuable advice and suggestions.
’ REFERENCES
(1) (a) Marx, V. Chem. Eng. News 2005, 83 (11), 17. (b) Nestor, J. J.,
Jr. Curr. Med. Chem. 2009, 16, 4399.
(2) Gentilucci, L.; De Marco, R.; Cerisoli, L. Curr. Pharm. Des. 2010,
16, 3185.
(3) Hruby, V. J. Nat. Rev. Drug Discovery 2002, 1, 847.
7703
dx.doi.org/10.1021/ja2023898 |J. Am. Chem. Soc. 2011, 133, 7700–7703