Journal of the American Chemical Society
Page 8 of 10
240. (d) Dallabernardina, P.; Ruprecht, C.; Smith, P. J.; Hahn, M.
Number and Degree of Branching Cooperate to Regulate Cell
Proliferation and Differentiation. Cell, 2007, 129, 123-134.
G.; Urbanowicz, B. R.; Pfrengle, F. Automated Glycan Assembly
of Galactosylated Xyloglucan Oligosaccharides and Their Recog-
nition by Plant Cell Wall Glycan-Directed Antibodies. Org. Bio-
mol. Chem. 2017, 15, 9996-10000. (e) Park, S.; Gildersleeve, J. C.;
Blixt, O.; Shin I. Carbohydrate Microarrays. Chem. Soc. Rev. 2013,
42, 4310-4326. (f) Rillahan C.D.; Paulson, J. C. Glycan Microarrays
for Decoding the Glycome. Annu. Rev. Biochem. 2011, 80, 797-
823.
(11) (a) Gagarinov, I. A.; Li, T.-H.; Toraño, J. S.; Caval, T.; Sri-
vastava, A. D.; Kruijtzer, J. A. W.; Heck, A. J. R.; Boons, G.-J.
Chemoenzymatic Approach for the Preparation of Asymmetric
Bi-, Tri-, and Tetra-Antennary N-Glycans from a Common Pre-
cursor. J. Am. Chem. Soc. 2017, 139, 1011-1018. (b) North, S. J.;
Hitchen, P. G.; Haslam, S. M.; Dell, A. Mass Spectrometry in the
Analysis of N-linked and O-linked Glycans. Curr. Opin. Struct.
Biol. 2009, 19, 498-506.
(12) (a) Boltjie, T. J.; Kim, J.-H.; Park, J.; Boons, G.-J. Chiral-
Auxiliary-Mediated 1,2-Cis-Glycosylations for the Solid-
Supported Synthesis of a Biologically Important Branched α-
Glucan. Nat. Chem. 2010, 2, 552-557. (b) Wu, X.; Grathwohl, M.;
Schmidt, R. R. Efficient Solid-Phase Synthesis of a Complex,
Branched N-Glycan Hexasaccharide: Use of a Novel Linker and
Temporary-Protecting-Group Pattern. Angew. Chem., Int. Ed.
2002, 41, 4489-4493.
1
2
3
4
5
6
7
8
(25) (a) Chiesa, M. V.; Schmidt, R. R. Synthesis of an Aspara-
gine-Linked Heptasaccharide - Basic Structure of N-Glycans.
Eur. J. Org. Chem. 2000, 21, 3541-3554. (b) Jonke, S.; Liu, K. G.;
Schmidt, R. R. Solid-Phase Oligosaccharide Synthesis of a Small
Library of N-Glycans. Chem. Eur. J. 2006, 12, 1274-1290.
(26) (a) Walczak, M. A.; Hayashida, J.; Danishefsky, S. J. Build-
ing Biologics by Chemical Synthesis: Practical Preparation of Di-
and Triantennary N-Linked Glycoconjugates. J. Am. Chem. Soc.
2013, 135, 4700-4703. (b) Wang, P.; Zhu, J.; Yuan, Y.; Danishefsky,
S. J. Total Synthesis of the 2,6-Sialylated Immunoglobulin G
Glycopeptide Fragment in Homogeneous Form. J. Am. Chem.
Soc. 2009, 131, 16669-16671. (c) Wu, B.; Hua, Z.; Warren, J. D.;
Raganathan, K.; Wan, Q.; Chen, G.; Tan, Z.; Chen, J.; Endo, A.;
Danishefsky, S. J. Synthesis of the Fucosylated Biantennary N-
Glycan of Erythropoietin. Tetrahedron Lett. 2006, 47, 5577-5579.
(27) (a) Manabe, Y.; Shomura, H.; Minamoto, N.; Nagasaki,
M.; Takakura, Y.; Tanaka, K.; Silipo, A.; Molinaro, A.; Fukase, K.
Convergent Synthesis of a Bisecting N-Acetylglucosamine (Glc-
NAc)-Containing N-Glycan. Chem. Asian J. 2018, 13, 1544-1551. (b)
Nagasaki, M.; Manabe, Y.; Minamoto, N.; Tanaka, K.; Silipo, A.;
Molinaro, A.; Fukase, K. Chemical Synthesis of a Complex-Type
N-Glycan Containing a Core Fucose. J. Org. Chem. 2016, 81,
10600-10616.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(13) Klán, P.; Šolomek, T.; Bochet, C. G.; Blanc, A.; Givens, R.;
Rubina, M.; Popik, V.; Kostikov, A.; Wirz, J. Photoremovable
Protecting Groups in Chemistry and Biology: Reaction Mecha-
nisms and Efficacy. Chem. Rev. 2013, 113, 119-191.
(14) Holmes, C. P. Model Studies for New o-Nitrobenzyl Pho-
tolabile Linkers:ꢀ Substituent Effects on the Rates of Photochem-
ical Cleavage. J. Org. Chem. 1997, 62, 2370-2380.
(15) Gude, M.; Ryf, J.; White, P. D. An Accurate Method for the
Quantitation of Fmoc-Derivatized Solid Phase Supports. Lett.
Pept. Sci. 2002, 9, 203-206.
(16) Hoffmann, J.; Kazmaier, U. Development of a New
NPPOC-Derived Photolabile Protecting Group Suitable for Cy-
clizations via Ring Closing Metathesis. Curr. Org. Synth. 2015, 12,
475-483.
(17) Wilcox, M.; Viola, R. W.; Johnson, K. W.; Billington, A. P.;
Carpenter, B. K.; McCray, J. A.; Guzikowski, A. P.; Hess, G. P.
Synthesis of Photolabile Precursors of Amino Acid Neurotrans-
mitters. J. Org. Chem. 1990, 55, 1585-1589.
(18) Salmi, C.; Letourneux, Y.; Brunel, J. M. Efficient Synthesis
of Various Secondary Amines Through a Titanium(IV) iso-
propoxide-Mediated Reductive Amination of Ketones. Lett. Org.
Chem. 2006, 3, 396-401.
(19) Bartetzko, M. P.; Schuhmacher, F.; Hahm, H. S.;
Seeberger, P. H.; Pfrengle, F. Automated Glycan Assembly of
Oligosaccharides Related to Arabinogalactan Proteins. Org. Lett.
2015, 17, 4344-4347.
(20) Šolomek, T.; Mercier, S.; Bally, T.; Bochet, C. G. Photoly-
sis of Ortho-Nitrobenzylic Derivatives: The Importance of the
Leaving Group. Photochem. Photobiol. Sci. 2012, 11, 548-555.
(21) (a) Ohtsubo, K.; Marth, J. D. Glycosylation in Cellular
Mechanisms of Health and Disease. Cell, 2006, 126, 855-867. (b)
Lauc, G.; Pezer, M.; Rudan, I.; Campbell, H. Mechanisms of Dis-
ease: The Human N-Glycome. Biochim. Biophys. Acta, 2016,
1860, 1574-1582.
(28) (a) Mꢀnnich, M.; Eller, S.; Karagiannis, T.; Perkams, L.;
Luber, T.; Ott, D.; Niemietz, M.; Hoffman, J.; Walcher, J.; Berger,
L.; Pischl, M.; Weishaupt, M.; Wirkner, C.; Lichtenstein, R. G.;
Unverzagt, C. Highly Efficient Synthesis of Multiantennary Bi-
sected N-Glycans Based on Imidates. Angew. Chem., Int. Ed.
2016, 55, 10487-10492. (b) Ott, D.; Seifert, J.; Prahl, I.; Niemietz,
M.; Hoffman, J.; Guder, J.; Mꢀnnich, M.; Unverzagt, C. Modular
Synthesis of Core Fucosylated N-Glycans. Eur. J. Org. Chem.
2012, 26, 5054-5068. (c) Eller, S.; Schuberth, R.; Gundel, G.; Sei-
fert, J.; Unverzagt, C. Synthesis of Pentaantennary N-Glycans
with Bisecting GlcNAc and Core Fucose. Angew. Chem., Int. Ed.
2007, 46, 4173-4175. (d) Schuberth, R.; Unverzagt, C. Synthesis of
a N-glycan nonasaccharide of the bisecting type with additional
core-fucose. Tetrahedron Lett. 2005, 46, 4201-4204.
(29) (a) Li, T.; Liu, L.; Wei, N.; Yang, J.-Y.; Chapla, D. G.;
Moremen, K. W.; Boons, G.-J. An Automated Platform for the
Enzyme-Mediated Assembly of Complex Oligosaccharides. Nat.
Chem. 2019, 11, 229-236. (b) Liu, L.; Prudden, A. R.; Capicciotti, C.
J.; Bosman, G. P.; Yang, J.-Y.; Chapla, D. G.; Moremen, K. W.;
Boons, G.-J. Streamlining the Chemoenzymatic Synthesis of
Complex N-Glycans by a Stop and Go Strategy. Nat. Chem. 2019,
11, 161-169. (c) Wang, Z.; Chinoy, Z. S.; Ambre, S. G.; Peng, W.;
McBride, R.; de Vries, R. P.; Glushka, J.; Paulson, J. C.; Boons, G.-
J. A General Strategy for the Chemoenzymatic Synthesis of
Asymmetrically Branched N-Glycans. Science, 2013, 341, 379-383.
(30) Koizumi, A.; Matsuo, I.; Takatani, M.; Seko, A.; Hachisu,
M.; Takeda, Y.; Ito, Y. Top-Down Chemoenzymatic Approach to
a High-Mannose-Type Glycan Library: Synthesis of a Common
Precursor and Its Enzymatic Trimming. Angew. Chem., Int. Ed.
2013, 52, 7426-7431.
(31) Li, L.; Liu, Y.; Ma, C.; Qu, J.; Calderon, A. D.; Wu, B.; Wei,
N.; Wang, X.; Guo, Y.; Xiao, Z.; Song, J.; Sugiarto, G.; Li, Y.; Yu,
H.; Chen, X.; Wang, P. G. Efficient Chemoenzymatic Synthesis of
an N-Glycan Isomer Library. Chem. Sci. 2015, 6, 5652-5661.
(32) (a) Shivatare, S. S.; Chang, S.-H.; Tsai, T.-I.; Ren, C.-T.;
Chuang, H.-Y.; Hsu, L.; Lin, C.-W.; Li, S.-T.; Wu, C.-Y.; Wong, C.-
H. Efficient Convergent Synthesis of Bi-, Tri-, and Tetra-
antennary Complex Type N-Glycans and Their HIV-1 Antigenici-
ty. J. Am. Chem. Soc. 2013, 135, 15382-15391. (b) Shivatare, S. S.;
Chang, S.-H.; Tsai, T.-I.; Tseng, S. Y.; Shivatare, V. S.; Lin, Y.-S.;
Cheng, Y.-Y.; Ren, C.-T.; Lee, C.-C. D.; Pawar, S.; Tsai, C.-S.; Shih,
H.-W.; Zeng, Y.-F.; Liang, C.-H.; Kwong, P. D.; Burton, D. R.;
(22) Freeze, H. H. Genetic Defects in the Human Glycome.
Nat. Rev. Genet. 2006, 7, 537-551.
(23) Zhao, Y.-Y.; Takahashi, M.; Gu, J.-G.; Miyoshi, E.; Matsu-
moto, A.; Kitazume, S.; Taniguchi, N. Functional Roles of N-
Glycans in Cell Signaling and Cell Adhesion in Cancer. Cancer
Sci. 2008, 99, 1304-1310.
(24) Lau, K. S.; Partridge, E. A.; Grigorian, A.; Silvescu, C. I.;
Reinhold, V. N.; Demetriou, M.; Dennis, J. W. Complex N-Glycan
ACS Paragon Plus Environment