Journal of Medicinal Chemistry
ARTICLE
metabolism procedures and results for 1, 31, 38, and 40. This
acs.org.
(9) Pirali, T.; Busacca, S.; Beltrami, L.; Imovilli, D.; Pagliai, F.;
Miglio, G.; Massarotti, A.; Verotta, L.; Tron, G. C.; Sorba, G.; Genazzani,
A. A. Synthesis and cytotoxic evaluation of combretafurans, potential
scaffolds for dual-action antitumoral agents. J. Med. Chem. 2006, 49,
5372–5376.
’ AUTHOR INFORMATION
(10) (a) Cafici, L.; Pirali, T.; Condorelli, F.; Del Grosso, E.;
Massarotti, A.; Sorba, G.; Canonico, P. L.; Tron, G. C.; Genazzani,
A. A. Solution-phase parallel synthesis and biological evaluation of
combretatriazoles. J. Comb. Chem. 2008, 10, 732–740. (b) Romagnoli,
R.; Baraldi, P. G.; Cruz-Lopez, O.; Lopez Cara, C.; Carrion, M. D.;
Brancale, A.; Hamel, E.; Chen, L.; Bortolozzi, R.; Basso, G.; Viola, G.
Synthesis and antitumor activity of 1,5-disubstituted 1,2,4-triazoles
as cis-restricted combretastatin analogues. J. Med. Chem. 2010, 53,
4248–4258. Wang, L.; Woods, K. W.; Li, Q.; Barr, K. J.; McCroskey,
R. W.; Hannick, S. M.; Gherke, L.; Credo, R. B.; Hui, Y.-H.; Marsh, K.;
Warner, R.; Lee, J. Y.; Zielinski-Mozng, N.; Frost, D.; Rosemberg, S. H.;
Sharm, H. L. Potent orally active heterocycle-based combretastatin A-4
analogues: synthesis, structureÀactivity relationship, pharmacokinetics,
and in vivo antitumor activity. J. Med. Chem. 2002, 45, 1697–1711.
Ohsumi, K.; Hatanaka, T.; Fujita, K.; Nakagawa, R.; Fukuda, Y.; Nihei,
Y.; Suga, Y.; Morinaga, Y.; Akiyama, Y.; Tsuji, T. Bioorg. Med. Chem. Lett.
1998, 8, 3153–3158.
Corresponding Author
*Phone: +39-0321-375857. Fax: +39-0321-375821. E-mail: tron@
pharm.unipmn.it.
Author Contributions
†These authors equally contributed to the present work.
’ ACKNOWLEDGMENT
Financial support from M.I.U.R. PRIN 2008 Italy and Asso-
ciazione per la Ricerca sul Cancro (AIRC) Italy are gratefully
acknowledged. S.T. thanks Italian Ministry of Foreign Affairs for
the Ph.D. fellowship.
’ ABBREVIATIONS USED
(11) (a) Cushman, M.; Nagarathnam, D.; Gopal, D.; He, H.-M.; Lin,
C. M.; Hamel, E. J. Med. Chem. 1992, 35, 2293–2306. (b) Gaukroger, K.;
Hadfield, J. A.; Hepworth, L. A.; Lawrence, N. J.; McGown, A. T. Novel
synthesis of cis and trans isomers of combretastatin A-4. J. Org. Chem.
2001, 66, 8135–8138.
CA-4, combretastatin A-4; CA-4P, combretastatin A-4 phosphate;
MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bro-
mide; GSH, glutathione reduced
(12) Handy, S. T.; Zhang, Y. A simple guide for predicting regios-
electivity in the coupling of polyhaloheteroaromatics. Chem. Commun.
2006, 299–301.
’ REFERENCES
(1) Pettit, G. R.; Singh, S. B.; Hamel, E.; Lin, C. M.; Alberts, D. S.; et al.
Isolation and structure of the strong cell growth and tubulin inhibitor
combretastatin A-4. Experientia 1989, 45, 209–211.
(13) (a) Nguyen, T. L.; McGrath, C.; Hermone, A. R.; Burnett, J. C.;
Zaharevitz, D. W.; Day, B. W.; Wipf, P.; Hamel, E.; Gussio, R. A common
pharmacophore for a diverse set of colchicine site inhibitors using
a structure-based approach. J. Med. Chem. 2005, 48, 6107–6116.
(b) Kong, Y.; Grembecka, J.; Edler, M. C.; Hamel, E.; Mooberry, S.;
Sabat, M.; Rieger, J.; Brown, M. L. Structure-based discovery of a boronic
acid bioisostere of combretastatin A-4. Chem. Biol. 2005, 12, 1007–1014.
(14) Tron, G. C.; Pagliai, F.; Del Grosso, E.; Genazzani, A. A.; Sorba,
G. Synthesis and cytotoxic evaluation of combretafurazans. J. Med. Chem.
2005, 48, 3260–3268.
(15) Minotti, A. M.; Barlow, S. B.; Cabral, F. Resistance to anti-
mitotic drugs in Chinese hamster ovary cells correlates with changes in
the level of polymerized tubulin. J. Biol. Chem. 1991, 266, 3987–3994.
(16) Evans, D. C.; Watt, A. P.; Nicoll-Griffith, D. A.; Baillie, T. A.
DrugÀprotein adducts: an industry perspective on minimizing the
potential for drug bioactivation in drug discovery and development.
Chem. Res. Toxicol. 2004, 17, 3–16.
(17) Ravelli, R. B.; Gigant, B.; Curmi, P. A.; Jourdain, I.; Lachkar, S.;
Sobel, A.; Knossow, M. Insight into tubulin regulation from a complex
with colchicines and a stathmin-like domain. Nature 2004, 428, 198–202.
(18) Zhang, W.; Yang, Q.; Wu, Y.; Wu, L.; Li, W.; Qiao, F.; Bao, K.;
Zhang, L. Preparation of 2,3-Diarylthiophene Derivatives As Antitumor
Agents. CN Patent 101429189, 2009. At least nine synthetic steps are
required to prepare the thiophene analogues of combretastatin reported
in this patent.
(19) Morris, G. M.; Goodsell, D. S.; Halliday, R. S.; Huey, R.; Hart,
W. E.; Belew, R. K.; Olson, A. Automated docking using a Lamarckian
genetic algorithm and empirical binding free energy function. J. Comput.
Chem. 1998, 19, 1639–1662.
(2) (a) Bibby, M. C. Combretastatin anticancer drugs. Drugs Future
2002, 27, 475–480.(b) Pinney, K. G.; Jelinek, C.; Edvardsen, K.; Chaplin,
D. J.; Pettit, G. R. The Discovery and Development of the Combretas-
tatins. In Antitumor Agents from Natural Products; Kingston, D., Newman,
D., Cragg, G., Eds.; CRC Press: Boca Raton, FL, 2005; pp 23À46.
(3) (a) Kanthou, C.; Tozer, G. M. The tumor vascular targeting agent
combretastatin A-4 phosphate induces reorganization of the actin cytos-
keleton and early membrane blebbing in human endothelial cells. Blood
2002, 99, 2060–2069. (b) Chaplin, D. J.; Hill, S. A. The devel-
opment of combretastatin A-4 phosphate as a vascular targeting agent.
Int. J. Radiat. Oncol., Biol., Phys. 2002, 54, 1491–1496. (c) West, C. M. L.;
Price, P. Combretastatin A4 phosphate. Anti-Cancer Drugs 2004, 15,
179–186. (d) Siemann, D. W.; Chaplin, D. J.; Walicke, P. A. A review
and update of the current status of the vasculature-disabling agent
combretastatin-A4 phosphate (CA4P). Expert Opin. Invest. Drugs 2009,
18, 189–197.
(4) Delmonte, A.; Sessa, C. AVE8062: a new combretastatin derivative
vascular disrupting agent. Expert Opin. Invest. Drugs 2009, 18, 1541–1548.
(5) Tron, G. C.; Pirali, T.; Sorba, G.; Pagliai, F.; Busacca, S.;
Genazzani, A. A. Medicinal chemistry of combretastatin A4: present
and future directions. J. Med. Chem. 2006, 49, 3033–3044.
(6) (a) Gaukroger, K.; Hadfield, J. A.; Lawrence, N. J.; Nlan, S.;
McGown, A. T. Structural requirements for the interaction of combre-
tastatins with tubulin: How important is the trimethoxy unit? Org.
Biomol. Chem. 2003, 1, 3033–3037. (b) Beale, T. M.; Myers, R. M.;
Shearman, J. W.; Charnock-Jones, D. S.; Brenton, J. D.; Gergely, F. V.;
Ley, S. V. Med. Chem. Commun. 2010, 1, 202–208.
(20) Riechelmann, R. P.; Del Giglio, A. Drug interactions in
oncology: how common are they? Ann. Oncol. 2009, 12, 1907–1912.
(21) Leandro-Garcia, L. J.; Leskela, S.; Landa, I.; Montero-Conde,
C.; Lopez-Jimꢁenez, E.; Leton, R.; Cascon, A.; Robledo, M.; Rodriguez-
Antona, C. Tumoral and tissue-specific expression of the major human
β-tubulin isotyoes. Cytoskeleton 2010, 67, 214–223.
(7) Aprile, S.; Del Grosso, E.; Tron, G. C.; Grosa, G. In vitro
metabolism study of combretastatin A-4 in rat and human liver micro-
somes. Drug Metab. Dispos. 2007, 35, 2252–2261.
(8) (a) Nam, N.-H. Combretastatin A-4 analogues as antimitotic
antitumor agents. Curr. Med. Chem. 2003, 10, 1697–1722. (b) Hsieh,
H. P.; Liou, J. P.; Mahindroo, N. Curr. Pharm. Des. 2005, 11, 1655–1677.
Chaudari, A.; Pandeya, S. N.; Kumar, P.; Sharma, P. P.; Gupta, S.; Soni,
N.; Verma, K. K.; Bhardwaj, G. Combretastatin A-4 analogues as
anticancer agents. Mini-Rev. Med. Chem. 2007, 12, 1186–1205.
4986
dx.doi.org/10.1021/jm200555r |J. Med. Chem. 2011, 54, 4977–4986