3236
S. Bera et al. / Tetrahedron Letters 52 (2011) 3234–3236
CH2OH
R
References and notes
CH2OPiv
R
PivCl, Et3N, dry DCM,
6 h
HN
HN
1. Reviews: (a) Nubbemeyer, U. Top. Curr. Chem. 2001, 216, 125; (b) Maier, M.
Angew. Chem., Int. Ed. 2000, 39, 2073; (c) Evans, P. A.; Holmes, B. Tetrahedron
1991, 47, 9131; (d) Lindstrom, U. M.; Somfai, P. Chem. Eur. J. 2001, 7, 94; (e)
Bieraugel, H.; Jansen, T. P.; Schoemaker, H. E.; Hiemstra, H.; van Maarseveen, J.
H. Org. Lett. 2002, 4, 2673; (f) Derrer, S.; Davies, J. E.; Holmes, A. B. J. Chem. Soc.,
Perkin Trans. 1 2000, 2957; (g) Nicolaou, K. C.; Vourloumis, D.; Winssinger, N.;
Baran, P. Angew. Chem., Int. Ed. 2000, 39, 44.
2. (a) Taunton, J.; Collins, J. L.; Schreiber, S. L. J. Am. Chem. Soc. 1996, 118, 10412;
(b) Murray, P. J.; Kranz, M.; Ladlow, M.; Taylor, S.; Berst, F.; Holmes, A. B.;
Keavey, K. N.; Jaxa-Chamiec, A.; Seale, P. W.; Stead, P.; Upton, R. J.; Croft, S. L.;
Clegg, W.; Elsegood, M. R. J. Bioorg. Med. Chem. Lett. 2001, 11, 773.
3. (a) Sanchez-Quesada, J.; Ghadiri, M. R.; Bayley, H.; Braha, O. J. Am. Chem. Soc.
2000, 122, 11757; (b) Bong, D. T.; Clark, T. D.; Granja, J. R.; Ghadiri, M. R. Angew.
Chem., Int. Ed. 2001, 40, 988.
O2N
O2N
70-80%
R1
R1
6a-e
7
1
14a-e
(R = H)
1
15
(R = CH3)
6a, R = CH3, R1 = H
1
6b
6c
6d
, R = CH(CH3)2, R = H
, R = CH2C6H5, R1 = H
, R = CH2CH(CH3)2, R1 = H
6e, R = CH(CH3)CH2CH3, R1 = H
7, R = CH3, R1 = CH3
Pd-C/H2, MeOH
45 Psi, 1 h
65-75%
4. Jarvo, E. R.; Miller, S. J. Tetrahedron 2002, 58, 2481.
5. Neogi, A.; Majhi, T. P.; Mukhopadhyay, R.; Chattopadhyay, P. J. Org. Chem. 2005,
2307–2314.
6. The Merck Index; Budavari, S., Ed., twelveth ed.; Merck Rahway: NJ, 1996. p
1105 and references cited therein.
7. Klohs, M. W.; Draper, M. S.; Petracek, F. J.; Ginzel, K. H.; Re, O. N. Arzneim.
Forsch. (Drug Res.) 1972, 22, 132.
8. Rezaei, Z.; Khabnadideh, S.; Pakshir, K.; Hossaini, Z.; Amiri, F.; Assadpour, E. Eur.
J. Med. Chem. 2009, 44, 3064–3067.
9. Al-Soud, Y. A.; Al-Masoudi, N. A.; Ferwanah, Abd El-R. S. Bioorg. Med. Chem.
2003, 11, 1701–1708.
NaNO2, 6 N H2SO4,
0 -120 °C, 5 h
N
N
CH2OPiv
N
HN
R
R1
OPiv
H2N
60-70%
R
R1
1
18 a-e
(R = H)
1
1
19
(R = CH3)
16a-e
17
(R = H)
1
(R = CH3)
10. Dawood, K. M.; Abdel-Gawad, H.; Rageb, E. A.; Ellithey, M.; Mohamed, H. A.
Bioorg. Med. Chem. 2006, 14, 3672–3680.
Scheme 5. Synthesis of 1-alkyl benzotriazoles derivatives.
11. Swamy, S. N.; Basappa, B.; Sarala, G.; Priya, B. S.; Gaonkar, S. L.; Prasad, J. S.;
Rangappa, K. S. Bioorg. Med. Chem. Lett. 2006, 16, 999–1004.
12. Kane, J. M.; Dudley, M. W.; Sorensen, S. M.; Miller, F. P. J. Med. Chem. 1988, 31,
1253.
amine by hydrogenolysis to afford pivaloyl protected amino carbi-
nols 16a–e and 17 in 65–75% yield. Then aromatic amines 16a–e
and 17 were diazotised in the presence of NaNO2 (1 equiv),
6 NÁH2SO4 to provide amino acid-derived 1-alkyl substituted enan-
tiomerically pure benzotriazole derivatives 18a–e and 19 with
good yield through formation of (N–N@N) bond.
In conclusion, we have reported an unprecedented diazo-oxy-
gen (N@N–O) bond formation which led to an entirely new kind
of benzo[d][1,2,3,6]oxatriazocines via one-pot three step sequence,
(i) diazotisation (ii) TBDMS deprotection, and (iii) cyclization. We
have also synthesized amino acid-derived 1-alkyl benzotriazole
derivatives via diazotization of 16a–e and 17 through diazo-
nitrogen (N@N–N) bond formation. Although diazo-nitrogen bond
formation is known,17 diazo-oxygen bond formation in acidic
medium is not reported in the literature.
13. Semple, G.; Skinner, P. J.; Cherrier, M. C.; Webb, P. J.; Sage, C. R.; Tamura, S. Y.;
Chen, R.; Richman, J. G.; Connolly, D. T. J. Med. Chem. 2006, 49, 1227–1230.
(a). Chandrasekhar, S.; Seenaiah, M.; Rao, Ch. L.; Reddy, Ch. R. Tetrahedron 2008, 64,
11325–11327. and references therein; (b) Verma, A. K.; Singh, J.; Sankar, V. K.;
Chaudhary, R.; Chandra, R. Tetrahedron Lett. 2007, 48, 4207–4210.
15. (a) Mishra, J. K.; Panda, G. Synthesis 2005, 1881; (b) Mishra, J. K.; Panda, G. J.
Comb. Chem. 2007, 9, 321; (c) Samanta, K.; Chakravarti, B.; Mishra, J. K.;
Dwivedi, S. K. D.; Nayak, L. V.; Choudhry, P.; Bid, H. K.; Konwar, R.;
Chattopadhyay, N.; Panda, G. Bioorg. Med. Chem. Lett. 2010, 20, 283; (d)
Mishra, J. K.; Samanta, K.; Jain, M.; Dikshit, M.; Panda, G. Bioorg. Med. Chem.
Lett. 2010, 20, 244; (e) Samanta, K.; Panda, G. Org. Biomol. Chem. 2010, 8, 2823.
16. General experimental procedure for the synthesis of 12a–e and 13: The
compounds 10a–e and 11 were dissolved in 5 mL 6 NÁH2SO4, then the
solution was cooled at 0 °C, followed by addition of ice-cooled aq solution of
NaNO2 (1 equiv.). It was refluxed for 6 h at 120 °C and was neutralized with aq
NaHCO3. The aqueous layer was extracted with ethyl acetate (3 Â 50 mL) and
dried over anhydrous sodium sulphate. The solvent was removed under
vacuum and the crude product was then purified by chromatography over
silica gel with eluent chloroform/methanol (9.2:0.8) to afford the title
compound 12a–e and 13. Spectra of 12a: IR (neat, cmÀ1): 3420, 3021, 2366,
1216, 768; 1H NMR (300 MHz, CDCl3) d 7.76 (d, 1H, J = 8.4 Hz), 7.50 (d, 1H,
J = 8.3 Hz), 7.41–7.36 (m, 1H), 7.23–7.18 (m, 1H), 4.91–4.85 (m, 1H), 4.26–4.19
(m, 1H), 4.08–4.04 (m, 1H), 3.21 (bs, 1H), 1.61 (d, 3H, J = 6.9 Hz) ppm; 13C NMR
Acknowledgements
Authors thank the Department of Science and Technology
(DST), New Delhi, India for financial support. KS and SB thank CSIR
for the fellowships.
(50 MHz, CDCl3):
d 145.5, 133.2, 127.2, 124.0, 119.6, 109.7, 65.8, 57.3,
16.8 ppm; MS (ESI): m/z 178 [M+H]+; Anal. Calcd for C9H11N3O: C, 61.00; H,
6.26; N, 23.71%; Found: C, 61.11; H, 6.20; N, 23.63%.
17. Kale, R. R.; Prasad, V.; Hussain, H. A.; Tiwari, V. K. Tetrahedron Lett. 2010, 51,
5740–5743.
Supplementary data
Supplementary data associated with this article can be found, in