3520
V. Elitzin et al. / Tetrahedron Letters 52 (2011) 3518–3520
4. (a) Fürstner, A.; Davies, P.; Gress, T. J. Am. Chem. Soc. 2005, 127, 8244; (b)
Fürstner, A.; Szillat, H.; Gabor, B.; Mynott, R. J. Am. Chem. Soc. 1998, 120,
8305.
5. (a) Lee, Y. T.; Kang, Y. K.; Chung, Y. K. J. Org. Chem. 2009, 74, 7922; (b) Nieto-
Oberhuber, C.; Munoz, M.; Bunuel, E.; Nevado, C.; Cardenas, D.; Echavarren, A.
M. Angew. Chem., Int. Ed. 2004, 43, 2402.
6. Examples: (a) Fürstner, A.; Szillat, H.; Stelzer, F. J. Am. Chem. Soc. 2000, 122,
6785; (b) Fürstner, A.; Stelzer, F.; Szillat, H. J. Am. Chem. Soc. 2001, 123,
11863; (c) Monnier, F.; Castillo, D.; Derien, S.; Toupet, L.; Dixneuf, P. Angew.
Chem., Int. Ed. 2003, 42, 5474; (d) Marion, F.; Coulomb, J.; Courillon, C.;
Fensterbank, L.; Malacria, M. Org. Lett. 2004, 6, 1509–1511; (e) Shibata, T.;
Kobayashi, Y.; Maekawa, S.; Toshida, N.; Takagi, K. Tetrahedron 2005, 61,
9018; (f) Kim, S.; Lee, S.; Chung, Y. Org. Lett. 2006, 8, 5425; (g) Nishimura, T.;
Kawamoto, T.; Nagaosa, M.; Kumamoto, H.; Hayashi, T. Angew. Chem., Int. Ed.
2010, 49, 1638.
7. For an excellent summary of p-toluenesulfonamide desulfonation
methodology, see: Nandi, P.; Redko, M. Y.; Petersen, K.; Dye, J. L.; Lefenfeld,
M.; Vogt, P. F.; Jackson, J. E. Org. Lett. 2008, 10, 5441–5444. and ref. therein.
8. Deschamps, N. M.; Elitzin, V. I.; Liu, B.; Mitchell, M. B.; Sharp, M. J.; Tabet, E. A. J.
Org. Chem. 2011, 76, 712–715.
9. (a) Bertani, B.; Di Fabio, R.; Micheli, F.; Tedesco, G.; Terreni, S. PCT Int.
Appl.WO2008031772, 2008.; (b) Micheli, F.; Cavanni, P.; Andreotti, D.; Arban,
R.; Benedetti, R.; Bertani, B.; Bettati, M.; Bettelini, L.; Bonanomi, G.; Braggio, S.;
Carletti, R.; Checchia, A.; Corsi, M.; Fazzolari, E.; Fontana, S.; Marchioro, C.;
Merlo-Pich, E.; Negri, M.; Oliosi, B.; Ratti, E.; Read, K. D.; Roscic, M.; Sartori, I.;
Spada, S.; Tedesco, G.; Tarsi, L.; Terreni, S.; Visentini, F.; Zocchi, A.; Zonzini, L.;
Di Fabio, R. J. Med. Chem. 2010, 53, 4989–5001; (c) Elitzin, V. I.; Harvey, K. A.;
Kim, H.; Salmons, M.; Sharp, M. J.; Tabet, E. A.; Toczko, M. A. Org. Process Res.
Dev. 2010, 14, 912–917.
10. Fukuyama, T.; Jow, C.-K.; Cheung, M. Tetrahedron Lett. 1995, 36, 6373–6374.
11. For related examples, including a proposed mechanism, see: Robles-Machin,
R.; Adrio, J.; Carretero, J. C. J. Org. Chem. 2006, 71, 5023–5026.
12. For a related example involving the reaction participation of pendant esters,
see: Zheng, H.; Zheng, J.; Yu, B.; Chen, Q.; Wang, X.; He, Y.; Yang, Z.; She, X. J.
Am. Chem. Soc. 2010, 132, 1788.
efficient synthetic route to the triple reuptake inhibitor
GSK1360707.16 In general, electron-donating moieties gave faster
and higher yielding reactions in both cases. A number of different
substrates were well tolerated, with the exception of those where
pendant functional groups (i.e., nitrogen lone pair, electron-rich car-
bonyl oxygen, or chloride) presumably compete irreversibly for
either the catalyst or the alkyne.
3. General cycloisomerization procedure
The N-tethered 1,6-enyne (2 mmol, 1 equiv), toluene (10 ml per
gram of substrate), and PtCl2 (53 mg, 0.2 mmol, 0.1 equiv) were
heated to ꢀ80 °C in a sealed vial. The reaction progress was mon-
itored by reverse-phase HPLC using a mixture of water and aceto-
nitrile as mobile phase (gradient at a flow rate of 1.0 ml/min and
UV detection at 220 nm). After completion, the reaction was cooled
to room temperature, filtered through celite and concentrated.
Acknowledgments
We are thankful to Mark Mitchell, Nicole Deschamps and
Robert Yule for useful discussions, and to Kim Harvey for analytical
support.
References and notes
1. Selected reviews: (a) Aubert, C.; Fensterbank, L.; Garcia, P.; Malacria, M.;
Simonneau, A. Chem. Rev. 2011, 111, 1954; (b) Fürstner, A. Chem. Soc. Rev. 2009,
38, 3208; (c) Michelet, V.; Toullec, P. Y.; Genet, J.-P. Angew. Chem., Int. Ed. 2008,
47, 4268–4315; (d) Zhang, L.; Sun, J.; Kozmin, S. A. Adv. Synth. Catal. 2006, 348,
2271; (e) Ma, S.; Yu, S.; Gu, Z. Angew. Chem., Int. Ed. 2006, 45, 200–203; (f)
Aubert, C.; Buisine, O.; Malacria, M. Chem. Rev. 2002, 102, 813.
2. Recent examples: (a) Molawi, K.; Delpont, N.; Echavarren, A. M. Angew. Chem.,
Int. Ed. 2010, 49, 3517–3519; (b) Trost, B. M.; Dong, G. Nature 2008, 456, 485–
488; (c) Veitch, G. E.; Beckmann, E.; Burke, B. J.; Boyer, A.; Maslen, S. L.; Ley, S.
V. Angew. Chem., Int. Ed. 2007, 46, 7629–7632.
13. Soriano, E.; Marco-Contelles, J. J. Org. Chem. 2005, 70, 9345.
14. Allylic chloride 6d gave no reaction even when a stoichiometric amount of
PtCl2 was used. Unreacted starting material was recovered after celite filtration
and solvent removal, suggesting that the formation of a Pt(IV) p–allyl complex
can be ruled out. Rather, the formation of a relatively labile yet unproductive
substrate–PtCl2 complex appears likely. Heating to >100 °C led to slow
decomposition.
15. For an alternate transformation involving a related substrate, see: Yeh, M.-C. P.;
Lin, M.-N.; Chang, W.-J.; Liou, J.-L.; Shih, Y.-F. J. Org. Chem. 2010, 75, 6031.
16. For example, 4j was cleanly converted to GSK1360707 upon treatment with
NaBH4 in MeOH. See also Ref. 8.
3. Ferrer, C.; Raducan, M.; Nevado, C.; Claverie, C.; Echavarren, A. M. Tetrahedron
2007, 63, 6306. and references therein.