Y. Dong, S. Lo, I. D. Williams, D. Zhu and B. Z. Tang, Chem.
Mater., 2003, 15, 1535.
polymer aggregates, PA can interact with the fluorophores
surrounding it, but TNT can only quench the emission of the fluo-
rophores that have interaction with it. Thus, quenching the emission
of polymer aggregates is more sensitive to PA than TNT.
6 (a) C.-T. Lai and J.-L. Hong, J. Phys. Chem. B, 2010, 114, 10302; (b)
K. Y. Pu and B. Liu, Adv. Funct. Mater., 2009, 19, 277; (c) L. Liu,
G. Zhang, J. Xiang, D. Zhang and D. Zhu, Org. Lett., 2008, 10,
4581; (d) L. Qian, J. Zhi, B. Tong, F. Yang, W. Zhao and Y. Dong,
Prog. Chem., 2008, 20, 673; (e) Y. Liu, X. Tao, F. Wang, X. Dang,
D. Zou, Y. Ren and M. Jiang, J. Phys. Chem. C, 2008, 112, 3975;
(f) Q. Peng, Y. Yi, Z. Shuai and J. Shao, J. Am. Chem. Soc., 2007,
129, 9333; (g) H. C. Yeh, S. J. Yeh and C. T. Chen, Chem.
Commun., 2003, 2632; (h) B. K. An, S. K. Kwon, S. D. Jung and
S. Y. Park, J. Am. Chem. Soc., 2002, 124, 14410; (i) Y. Jiang,
Y. Wang, J. Hua, J. Tang, B. Li, S. Qian and H. Tian, Chem.
Commun., 2010, 46, 4689; (j) Z. Xie, B. Yang, W. Xie, L. Liu,
F. Shen, H. Wang, X. Yang, Z. Wang, Y. Li, M. Hanif, G. Yang,
L. Ye and Y. Ma, J. Phys. Chem. B, 2006, 110, 20993.
7 (a) A. Qin, J. W. Y. Lam, L. Tang, C. K. W. Jim, H. Zhao, J. Sun and
B. Z. Tang, Macromolecules, 2009, 42, 1421; (b) A. Qin, L. Tang,
J. W. Y. Lam, C. K. W. Jim, Y. Yu, H. Zhao, J. Sun and
B. Z. Tang, Adv. Funct. Mater., 2009, 19, 1891.
8 (a) B. Voit and A. Lederer, Chem. Rev., 2009, 109, 5924; (b)
€
M. Haubler, A. Qin and B. Z. Tang, Polymer, 2007, 48, 6181; (c)
C. Gao and D. Yan, Prog. Polym. Sci., 2004, 29, 183.
9 (a) J. Liu, Y. Zhong, J. W. Y. Lam, P. Lu, Y. Hong, Y. Yu, Y. Yue,
M. Faisal, H. H. Y. Sung, I. D. Williams, K. S. Wong and B. Z. Tang,
Macromolecules, 2010, 43, 4921; (b) J. Liu, Y. Zhong, P. Lu, Y. Hong,
J. W. Y. Lam, M. Faisal, Y. Yu, K. S. Wong and B. Z. Tang, Polym.
Chem., 2010, 1, 426; (c) P. Lu, J. W. Y. Lam, J. Liu, C. K. W. Jim,
W. Yuan, N. Xie, Y. Zhong, Q. Hu, K. S. Wong, K. K. L. Cheuk
and B. Z. Tang, Macromol. Rapid Commun., 2010, 31, 834.
10 J. Chen, H. Peng, C. C. W. Law, Y. Dong, J. W. Y. Lam,
I. D. Williams and B. Z. Tang, Macromolecules, 2003, 36, 4319.
11 Z. Zhao, S. Chen, X. Shen, M. Faisal, Y. Yu, P. Lu, J. W. Y. Lam,
H. S. Kwok and B. Z. Tang, Chem. Commun., 2010, 46, 686.
In summary, by taking advantage of the innovative spring-like
architectures, we have synthesized AIE-active hyperbranched poly-
triazoles by the well-established Cu(PPh3)3Br-mediated triazide-diyne
click polymerization. The aAIE values (up to 348.3) of hyperbranched
polytriazoles are larger than those of many AIE luminogens, such as
TPE and HPS. Thanks to the high compression ratio of the polymers
from solution to solid states, the intramolecular rotation of phenyl
rings was greatly restricted and efficient light emission in aggregate
(FF up to 38.31) and solid state (FF ¼ 100%) was obtained. The
polymers are soluble and thermally stable, and possess good film-
forming ability. Using the novel AIE effect, the polymers can act as
chemosensors for the superamplified detection of explosives in their
aggregate states. The main mechanism for the detection of PA is
ascribed to the energy transfer, and that for TNT is the charge
transfer. The concept of spring-like polymeric structures is of great
value in terms of guiding future molecular engineering endeavors in
designing hyperbranched polymers with AIE characteristics. The
possibility of using these AIE-active hyperbranched polymers for
other high-tech applications is currently under exploration in our
laboratories.
Acknowledgements
12 (a) A. Qin, J. W. Y. Lam and B. Z. Tang, Chem. Soc. Rev., 2010, 39,
2522; (b) A. Qin, J. W. Y. Lam and B. Z. Tang, Macromolecules, 2010,
43, 8693; (c) A. Qin, J. W. Y. Lam, C. K. W. Jim, L. Zhang, J. Yan,
This work is partially supported by the National Natural Science
Foundation of China (20634020, 50703033, 20974098), the Ministry
of Science and Technology of China (2009CB623605), the University
Grants Committee of Hong Kong (AoE/P-03/08), the Research
Grants Council of Hong Kong (603509, 601608, 602707, and ITS/
168/09). A.J.Q. and B.Z.T acknowledge the supports from the
Fundamental Research Funds for the Central Universities
(2010KYJD005), and the Cao Guangbiao Foundation of Zhejiang
University, respectively.
€
M. Haussler, J. Liu, Y. Dong, D. Liang, E. Chen, G. Jia and
B. Z. Tang, Macromolecules, 2008, 41, 3808; (d) V. V. Rostovtsev,
L. G. Green, V. V. Fokin and K. B. Sharpless, Angew. Chem., Int.
Ed., 2002, 41, 2596; (e) C. W. Tornøe, C. Christensen and
M. Meldal, J. Org. Chem., 2002, 67, 3057.
13 (a) Z. Xie, S. J. Yoon and S. Y. Park, Adv. Funct. Mater., 2010, 20,
1638; (b) Q. Peng, L. Yan, D. Chen, F. Wang, P. Wang and
D. Zou, J. Polym. Sci., Part A: Polym. Chem., 2007, 45, 5296; (c)
X. Liu, C. He, X. Hao, L. Tan, Y. Li and K. S. Ong,
Macromolecules, 2004, 37, 5965; (d) Q. He, H. Huang, Q. Sun,
H. Lin, J. Yang and F. Bai, Polym. Adv. Technol., 2004, 15, 43.
14 (a) N. B. McKeown and P. M. Budd, Macromolecules, 2010, 43,
5163; (b) J. X. Jiang, A. Trewin, F. Su, C. D. Wood, H. Niu,
J. T. A. Jones, Y. Z. Khimyak and A. I. Cooper, Macromolecules,
2009, 42, 2658.
Notes and References
1 M. Shimizu and T. Hiyama, Chem.–Asian J., 2010, 5, 1516.
2 J. B. Birks, Photophysics of Aromatic Molecules, Wiley, London,
1970.
3 Y. Hong, J. W. Y. Lam and B. Z. Tang, Chem. Commun., 2009, 4332.
4 (a) J. Luo, Z. Xie, J. W. Y. Lam, L. Cheng, H. Chen, C. Qiu,
H. S. Kwok, X. Zhan, Y. Liu, D. Zhu and B. Z. Tang, Chem.
Commun., 2001, 1740; (b) J. Liu, J. W. Y. Lam and B. Z. Tang,
Chem. Rev., 2009, 109, 5799.
5 (a) Y. Liu, Y. Tang, N. N. Barashkov, I. S. Irgibaeva, J. W. Y. Lam,
R. Hu, D. Birimzhanova, Y. Yu and B. Z. Tang, J. Am. Chem. Soc.,
2010, 132, 13951; (b) Z. Zhao, Z. Wang, P. Lu, C. Y. K. Chan, D. Liu,
J. W. Y. Lam, H. H. Y. Sung, I. D. Williams, Y. Ma and B. Z. Tang,
Angew. Chem., Int. Ed., 2009, 48, 7608; (c) A. Qin, J. W. Y. Lam,
M. Faisal, C. K. W. Jim, L. Tang, J. Sun, H. H. Y. Sung,
I. D. Williams and B. Z. Tang, Appl. Phys. Lett., 2009, 94, 253308;
15 (a) S. W. Thomas III, G. D. Joly and T. M. Swager, Chem. Rev., 2007,
107, 1339; (b) S. J. Toal and W. C. Trogler, J. Mater. Chem., 2006, 16,
2871.
16 D. Zhao and T. M. Swager, Macromolecules, 2005, 38, 9377.
17 (a) H. Sohn, M. J. Sailor, D. Magde and W. C. Trogler, J. Am. Chem.
Soc., 2003, 125, 3821; (b) T. H. Kim, H. J. Kim, C. G. Kwak,
W. H. Park and T. S. Lee, J. Polym. Sci., Part A: Polym. Chem.,
2006, 44, 2059.
18 (a) S. W. Thomas III, J. P. Amara, R. E. Bjork and T. M. Swager,
Chem. Commun., 2005, 4572; (b) R. Tu, B. Liu, Z. Wang, D. Gao,
F. Wang, Q. Fang and Z. Zhang, Anal. Chem., 2008, 80, 3458; (c)
Y. H. Lee, H. Liu, J. Y. Lee, S. H. Kim, S. K. Kim, J. L. Sessler,
Y. Kim and J. S. Kim, Chem.–Eur. J., 2010, 16, 5895.
€
(d) Z. Li, Y. Q. Dong, J. W. Y. Lam, J. Sun, A. Qin, M. Haubler,
Y. P. Dong, H. H. Y. Sung, I. D. Williams, H. S. Kwok and
B. Z. Tang, Adv. Funct. Mater., 2009, 19, 905; (e) G. Yu, S. Yin,
Y. Liu, J. Chen, X. Xu, X. Sun, D. Ma, X. Zhan, Q. Peng,
Z. Shuai, B. Z. Tang, D. Zhu, W. Fang and Y. Luo, J. Am. Chem.
Soc., 2005, 127, 6335; (f) J. Chen, C. W. Law, J. W. Y. Lam,
19 (a) J.-S. Yang and T. M. Swager, J. Am. Chem. Soc., 1998, 120, 11864;
ꢀ
(b) J. L. Bredas, R. Silbey, D. S. Boudreaux and R. R. Chance, J. Am.
Chem. Soc., 1983, 105, 6555.
20 B. Valeur, Molecular Fluorescence: Principle and Applications, Wiley-
VCH, Weinheim, 2002.
This journal is ª The Royal Society of Chemistry 2011
J. Mater. Chem., 2011, 21, 4056–4059 | 4059