1996
B. Boe¨ns et al. / Tetrahedron 66 (2010) 1994–1996
Table 4
4.2. General procedure for porphyrin synthesis
Yield comparison between literature and I2/M.W. methods
Substituted aldehydes (0.25 mmol), benzaldehyde (76
0.75 mmol), molecular iodine (25 mg, 0.1 equiv), then pyrrole (70
m
m
L,
L,
Compounds
Aldehydes
Ref. 18 (%)
This study (%)
8
1 mmol) were added successively to 10 mL CH2Cl2, without particular
precautions. After the first activation (100 W, 30 ꢂC), TLC showed the
total conversion of benzaldehyde. para-Chloranil (0.75 equiv,184 mg)
was then added and a second activation was performed (100 W,
30 ꢂC). The reaction mixture was evaporated on florisil and purified
by flash chromatography (eluent gradient: EP/CHCl3, 8/2–1/9).
3
7
4
5
6
7.4
15
5
11
15
27
4.3. Spectroscopic data
All physicochemical properties coincided with literature
data.10,13,18
Acknowledgements
obtained with the synthesis of 5-(4-chlorophenyl)-10,15,20-tri-
phenylporphyrin; the latter attests for the competition between the
two possible effects of the chlorine group, which is at the same time
electro donor and acceptor.
The authors thank Dr. Michel Guilloton for his help in manu-
script editing.
References and notes
3. Conclusions
1. (a) Lin, V. S.-Y.; DiMagno, S. G.; Therien, M. J. Science 1994, 264, 1105–1111; (b)
Drain, C. M.; Russell, K. C.; Lehn, J.-M. Chem. Commun. 1996, 337–338; (c) An-
derson, H. L. Chem. Commun. 1999, 2323–2330; (d) Clausen, C.; Gryko, D. T.;
Dabke, R. B.; Dontha, N.; Bocian, D. F.; Kuhr, W. G.; Lindsey, J. S. J. Org. Chem.
2000, 65, 7363–7370; (e) Guldi, D. M. Chem. Soc. Rev. 2002, 31, 22–36.
2. (a) Wijesekera, T. P.; Dolphin, D. In Metalloporphyrins in Catalytic Oxidations;
Sheldon, R. A., Ed.; Marcel Dekker: New York, NY, 1994; pp 193–231; (b)
Bhyrappa, P.; Young, J. K.; Moore, J. S.; Suslick, K. S. J. Am. Chem. Soc. 1996, 118,
5708–5711; (c) Gross, Z.; Galili, N.; Simkhovich, L. Tetrahedron Lett. 1999, 40,
1571–1574.
A series of mono functionalized porphyrins have been synthe-
sized by a variation of the Little mixed aldehyde method in which
propionic acid was replaced by catalytic amounts of molecular
iodine. The use of undistilled solvents and reactants are major
advantages of this method because it spares time and avoids in-
convenient conditions. Furthermore, this method allows the use of
high reactant concentration compared to the classical Lindsey
method. Activation by microwave irradiation has been used to
provide final product in short times and with sometimes a good
selectivity (–NO2 and –COOMe). 5-(4-Nitrophenyl)-10,15,20-tri-
phenylporphyrin is an interesting product, able to provide valuable
intermediates through the production of amino porphyrin by re-
duction of NO2, or Vicarious Nucleophilic Substitution (VNS). This
method has been validated by synthesis of other mono functional-
ized porphyrins of interest, with yields ranging from 8 to and 27%,
always higher than reference yields provided by the Little’s method.
3. Kadish, K. M.; Smith, K.; Guillard, R. The Porphyrin Handbook; Academic: New
York, NY, 2000; Vol. 6, pp 43–131.
4. (a) DeLaney, T. F.; Glatstein, E. Compr. Ther.1988,14, 43–55; (b) Peng, Q.; Warloe, T.;
Berg, K.; Moan, J.; Kongshaug, M.; Giercksky, K. E.; Nesland, J. M. Cancer 1997, 79,
2282–2308; (c) Sternberg, E. D.; Dolphin, D.; Bruckner, C. Tetrahedron 1998, 54,
4151–4202; (d) Hsi, R. A.; Rosenthal, D. I.; Glatstein, E. Drugs 1999, 57, 725–734.
5. (a) Hudson, R.; Boyle, R. W. J. Porphyrins Phthalocyanines 2004, 8, 954–975; (b)
Hudson, R.; Carcenac, M.; Smith, K.; Madden, L.; Clarke, O. J.; Pe`legrin, A.;
Greenman, J.; Boyle, R. W. Br. J. Cancer 2005, 92, 1442–1449; (c) Lucas, R.; Granet,
¨
`
R.; Sol, V.; Le Morvan, C.; Policar, C.; Riviere, E.; Krausz, P. e-Polymers 2007, 89.
6. Fischer, H.; Stern, A. Die Chemie des pyrrols; Akad: Leipzig, 1940; Vol. 2, Part 2.
7. Little, R. G.; Anton, J. A.; Loach, P. A.; Ibers, J. A. J. Heterocycl. Chem.1975,12, 343–349.
8.
M
a˛kosza, M.; Wojciechowski, K. Liebigs Ann. Chem. 1997, 9, 1805–1816.
9. (a) Al’ Ansari, Y. F.; Baulin, V. E.; Savinkina, E. V.; Tsivadze, A. Y. Russ. J. Coord.
Chem. 2008, 911–916; (b) Wang, L.; Feng, Y.; Xue, J.; Li, Y. J. Serb. Chem. Soc.
2008, 73, 1–6; (c) Shi, W. M.; Wu, J.; Wu, Y. F.; Qian, K. X. Chin. Chem. Lett. 2004,
15, 1427–1429.
10. (a) Spitzer, A. U.; Stewart, R. J. Org. Chem. 1974, 39, 3936–3937; (b) Uemura, S.;
Toshimitsu, A.; Okano, M. J. Chem. Soc., Perkin Trans. 1 1978, 9, 1076–1079.
11. (a) Banik, B. K.; Samajdar, S.; Banik, I. J. Org. Chem. 2004, 69, 213–216; (b) Wang,
S.-Y. Synlett 2004, 2642–2643; (c) Stepien´ , M.; Sessler, J. L. Org. Lett. 2007, 9,
4785–4787; (d) Kidwai, M.; Bansal, V.; Mothsra, P.; Saxena, S.; Somvanshi, R. K.;
Dey, S.; Singh, T. P. J. Mol. Catal. A: Chem. 2007, 268, 76–81.
12. (a) Lin, C.; Hsu, J.; Sastry, N. V.; Fang, H.; Tu, Z.; Liu, J.-T.; Ching-Fa, Y. Tetrahedron
2005, 61, 11751–11757; (b) Das, B.; Chowdhury, N.; Damodar, K. Tetrahedron
Lett. 2007, 48, 2867–2870.
13. Lucas, R.; Vergnaud, J.; Teste, K.; Zerrouki, R.; Sol, V.; Krausz, P. Tetrahedron Lett.
2008, 49, 5537–5539.
14. (a) Rothemund, P. J. J. Am. Chem. Soc. 1935, 61, 2912–2915; (b) Rothemund, P. J.;
Menotti, A. R. J. Am. Chem. Soc. 1941, 63, 267–270.
15. Adler, A. D.; Longo, F. R.; Finarelli, J. D.; Goldmacher, J.; Assour, J.; Korsakoff, L.
J. Org. Chem. 1967, 32, 476.
16. Lindsey, J. S.; Hsu, I. C.; Schreiman, I. C. Tetrahedron Lett. 1986, 27, 4969–4970.
17. Gujadhur, R. K.; Bates, C. G.; Venkataraman, D. Org. Lett. 2001, 3, 4315–4317.
18. (a) Tome´, J. P. C.; Neves, M. G. P. M. S.; Tome´, A. C.; Cavaleiro, J. A. S.; Mendonça,
A. F.; Pegado, I. N.; Duarte, R.; Valdeira, M. L. Bioorg. Med. Chem. 2005, 13, 3878–
3888; (b) Park, Y.-T.; Yun, Y.-S.; Kin, H.-W.; Kim, Y.-D. Bull. Korean Chem. Soc.
1990, 11, 171–173; (c) Kudrevich, S. V.; Ali, H.; van Lier, J. E. J. Chem. Soc., Perkin
Trans. 1 1994, 2767–2774; (d) Balaz, M.; Holmes, A. E.; Benedetti, M.; Proni, G.;
Berova, N. Bioorg. Med. Chem. 2005, 13, 2413–2421.
4. Experimental section
4.1. General methods
All the solvents and chemicals were commercially available and,
unless otherwise stated, were used as received. Benzaldehyde
(99%), pyrrole (98%), and p-anisaldehyde (98%) were purchased
from Aldrich, and tolualdehyde (98%) was purchased from Alfa
Aesar. Reactions were monitored by thin-layer chromatography
(TLC) on precoated 0.2 mm silica gel 60 F254 (Merck) plates and
visualized with an ultraviolet light source at 254 nm. Microwave
irradiations were performed by the means of an Ethos 1600
MicroSynth reactor from Milestone. Temperature was measured
with a fiber optic thermometer (ATC-FO)/Ethos. 1H NMR spectra
were recorded at 400.13 MHz with a Bru¨ker DPX spectrometer.
Chemical shifts (d) are expressed in parts per million with Me4Si as
an internal standard (
shift, multiplicity (s, singlet; d, doublet; t, triplet; q, quartet; m,
multiplet, and br, broad), coupling constants (Hz) and assignment.
d
¼0). Data are reported as follows: chemical