ChemComm
Communication
7 T. J. Korn, M. A. Schade, S. Wirth and P. Knochel, Org. Lett., 2006, 8,
725–728.
8 (a) R. P. Hughes, R. B. Laritchev, L. N. Zakharov and A. L. Rheingold,
J. Am. Chem. Soc., 2005, 127, 6325–6334; (b) P. K. Chan and
W. K. Leong, Organometallics, 2008, 27, 1247–1253.
´
9 (a) R. Rumin, K. Guennou, R. Pichon, F. Y. Ptiilone, K. W. Muir and
D. S. Yufitt, J. Organomet. Chem., 1997, 533, 177–185; (b) Z. Mo,
Q. Zhang and L. Deng, Organometallics, 2012, 31, 6518–6521.
10 There have been several reports on nucleophilic intermediates generated
in the presence of late transition metals. See, (a) J. Terao, S. A. Begum,
A. Oda and N. Kambe, Synlett, 2005, 1783–1786; (b) S. Yamada,
T. Takahashi, T. Konno and T. Ishihara, Chem. Commun., 2007,
3679–3681; (c) B. C. Bailey, J. C. Huffman and D. J. Mindiola, J. Am.
Chem. Soc., 2007, 129, 5302–5303; (d) S. Yamada, E. Ishii, T. Konno and
T. Ishihara, Tetrahedron, 2008, 64, 4215–4223; (e) S. Yamada, K. Shimoji,
T. Takahashi, T. Konno and T. Ishihara, Chem.–Asian J., 2010, 5,
1846–1853; ( f ) S. Yamada, T. Takahashi, T. Konno and T. Ishihara,
J. Fluorine Chem., 2013, 149, 95–103.
11 For the generation of nucleophilic intermediates via early transition
metal-mediated C–F bond activation, see, M. Fujiwara, J. Ichikawa,
T. Okauchi and T. Minami, Tetrahedron Lett., 1999, 40, 7261–7265.
12 For Cr-mediated reaction, see, (a) K. Takai, K. Kimura, T. kuroda,
T. Hiyama and H. Nozaki, Tetrahedron Lett., 1983, 24, 5281–5284;
(b) H. Jin, J. Uenishi, W. J. Christ and Y. Kishi, J. Am. Chem. Soc.,
1986, 108, 5644–5646; (c) K. Takai, Org. React., 2004, 64, 253–612.
13 T. Shimada, T. Konno and T. Ishihara, Chem. Lett., 2007, 636–637.
14 Assignment of the stereochemistry of 2 was made by NMR spectroscopy.
The coupling constants between vinyl-H and F were 21–23 Hz for 2A and
35–38 for 2B–E, which indicate that the 2A and 2B–E possess E and Z
configuration, respectively. The detail was shown in ESI†.
15 For the preparation of 1C, see S. Peng, F. Qing, Y. Li and C. Hu,
J. Org. Chem., 2000, 65, 694–700. 1B was easily prepared from 1C in
two steps (1. DIBAL-H, 2. TBDPS-Cl/Imidazole).
16 When the reaction with benzaldehyde was carried out under the
same reaction conditions as employed in Table 2, the coupling
product was obtained in only 44%, together with 40% recovery of
the starting material.
17 J. Chen and C.-M. Hu, J. Chem. Soc., Perkin Trans. 1, 1994, 1111–1114.
18 M. D. Bartberger, W. R. Dolbier, Jr., J. Lusztyk and K. U. Ingold,
Tetrahedron, 1997, 53, 9857–9880.
19 When the reaction was carried out at À40 1C for 16 h in the presence
of 2.0 equiv. of Ti(OiPr)4, instead of a catalytic amount of LiI, 5C was
obtained in 40% yield.
Fig. 2 Chelation control.
afford the anion radical Int-2, which undergoes a smooth
elimination of fluoride to provide a monofluorovinyl radical
Int-3. Then a subsequent single electron transfer results in the
formation of a thermokinetically stable (E)-fluorovinylchromium
reagent Int-4, which can react with various aldehydes to yield
the corresponding (Z)-b-fluoroallylic alcohol derivatives 2,
whereas unreacted vinylchromium provides (Z)-fluoroalkene 4
after quenching the reaction with H2O.
In the case of the reaction with 1A, however, b-elimination of
1 by the chromium alkoxide Int-5 may play a role to provide
difluoroalkene 5 due to a highly acidic a-proton of the carbonyl
(Path B). Additionally, the Lewis acidic chromium metal can
coordinate with the carbonyl oxygen of the oxazolidinone moiety to
form a stable 7-membered intermediate Int-6 (Fig. 2), which can
react with aldehydes to produce (E)-b-fluoroallylic alcohols 2Aa–Ai.
In summary, this communication reports the convenient
Cr(II)Cl2-mediated generation of (E)- or (Z)-a-fluorovinylchromium
species via C–F bond activation. These intermediates are very
nucleophilic, which can react smoothly with various aldehydes,
and b-fluoroallylic alcohols are afforded in moderate yields.
Notably, the present methodology makes it possible to prepare
both (E)- and (Z)-fluoroalkenes in a highly stereoselective
manner.22 Further studies on the reductive coupling are now
underway in our laboratory.
20 It has been reported that trichloroalkanes in the presence of 4 equiv.
of CrCl2 can be converted into the corresponding chlorovinylidene
chromium(III) carbenoids. See, (a) R. Baati, D. K. Barma, J. R. Falck
and C. Mioskowski, J. Am. Chem. Soc., 2001, 123, 9196–9197;
(b) D. K. Barma, R. Baati, A. Valleix, C. Mioskowski and
J. R. Falck, Org. Lett., 2001, 3, 4237–4238; (c) R. Baati,
D. K. Barma, U. M. Krishna, C. Mioskowski and J. R. Falck, Tetra-
hedron Lett., 2002, 43, 959–961.
Notes and references
1 For review, see, (a) H. Amii and K. Uneyama, Chem. Rev., 2009, 109,
2119–2183; (b) E. Clot, O. Eisenstein, N. Jasim, S. A. Macgregor,
J. E. Mcgrady and R. N. Perutz, Acc. Chem. Res., 2011, 44, 333–348.
2 (a) N. Yoshikai, H. Mashima and E. Nakamura, J. Am. Chem. Soc.,
2005, 127, 17978–17979; (b) C. Yu, C. Zhang and X. Shi, Eur. J. Org.
Chem., 2012, 1953–1959.
21 It has been discussed that LiI play an important role in solubility of
CrCl2 in DMF. See, L. Wessjohann and T. Gabriel, J. Org. Chem.,
1997, 62, 3772–3774.
3 (a) A. Hazari, V. Gouverneur and J. M. Brown, Angew. Chem., Int. Ed.,
2009, 48, 1296–1299; (b) X. Pigeion, M. Berferon, F. Barabe, P. Dube,
´
´
H. F. Frost and J.-F. Paquin, Angew. Chem., Int. Ed., 2010, 49, 22 To our best of knowledge, there has been no reports on highly
1123–1127; (c) M. Ohashi, T. Kambara, T. Hatanaka, H. Saijo,
R. Doi and S. Ogoshi, J. Am. Chem. Soc., 2011, 133, 3256–3259;
(d) D. Yu, Q. Shen and L. Lu, J. Org. Chem., 2012, 77, 1798–1804;
(e) M. Ohashi, H. Saijo, M. Shibata and S. Ogoshi, Eur. J. Org. Chem.,
2013, 443–447.
4 (a) J. Terao, H. Watabe and N. Kambe, J. Am. Chem. Soc., 2005, 127,
3656–3657; (b) T. Schaub, M. Backes and U. Radius, J. Am. Chem.
Soc., 2006, 128, 15964–15965; (c) M. Tobisu, T. Xu, T. Shimasaki and
N. Chatani, J. Am. Chem. Soc., 2011, 133, 19505–19511; (d) W.-J. Guo
and Z.-X. Wang, J. Org. Chem., 2013, 78, 1054–1061.
5 (a) T. Wang, B. J. Alfonso and J. A. Love, Org. Lett., 2007, 9,
5629–5631; (b) H. L. Buckley, T. Wang, O. Tran and J. A. Love,
Organometallics, 2009, 28, 2356–2359.
6 (a) S. T. Belt, M. Helliwell, W. D. Jones, M. G. Partridge, R. N. Perutz
and M. K. Whittleesey, Chem. Commun., 1996, 961–962; (b) T. Braun,
stereoselective synthesis of both (E)- and (Z)-fluoroalkene using
the same methodology. As the preparation of fluoroalkenes,
for example, see, (a) T. Dubuffet, C. Bidon, P. Martinet,
ˆ
R. Sauvetre and J. F. Normant, J. Organomet. Chem., 1990, 393,
161–172; (b) T. Allmendinger, E. Felder and E. Hungarbu¨hler,
Tetrahedron Lett., 1990, 31, 7301–7304; (c) M. Shimizu, T. Hata
and T. Hiyama, Tetrahedron Lett., 1999, 40, 7375–7378; (d) Y.
Nakamura, M. Okada, H. Horikawa and T. Taguchi, J. Fluorine
Chem., 2002, 117, 143–148; (e) G. Dutheuil, X. Lei, X. Pannecoucke
and J.-C. Quirion, J. Org. Chem., 2005, 70, 1911–1914;
( f ) G. S. Nikolova and G. Haufe, Beilstein J. Org. Chem., 2008,
4, 12; (g) H. Yanai and T. Taguchi, Eur. J. Org. Chem., 2011,
5939–5954; (h) M. Bergeron, T. Hohnson and J. F. Paquin, Angew.
Chem., Int. Ed., 2011, 50, 11112–11116; (i) H. Yanai, H. Okada,
A. Sato, M. Okada and T. Taguchi, Tetrahedron Lett., 2011, 52,
2997–3000; ( j) C. Schneider, D. Masi, S. Couve-Bonnaire,
X. Pannecoucke and C. Hoarau, Angew. Chem., Int. Ed., 2013, 52, 1–5.
¨
M. A. Salomon, K. Altenhoner, M. Teltewskoi and S. Hinze, Angew.
Chem., Int. Ed., 2009, 48, 1818–1822.
This journal is ©The Royal Society of Chemistry 2014
Chem. Commun., 2014, 50, 1543--1545 | 1545