The UV-vis spectra of 1+, 2+ and 3+ are very similar, and all
exhibit an intense absorption band at ca. 440 nm; together with a
less intense low energy broad NIR band at ca. 950 nm [lmax/nm
(e/M-1cm-1): 440 nm (2420), 970 nm (590) 1+; 438 (3400), 920
(1200) 2+; 442 (3800), 910 (1240) 3+] (Fig. 5). Both these bands are
characteristic of those of phenoxyl radical complexes, the former
being assigned to the p–p* transition of the coordinated phenoxyl
radical.3 The similarity of the spectra of 1+, 2+ and 3+ indicates
that, as opposed to those of their parent complexes, the absorption
spectra of the Cu(II)-phenoxyl radical complexes are less sensitive
to geometrical change and/or H-bonding interaction. Although
one should note that whilst the ca. 440 nm band in 1+ displays a
gaussian shape, those of 2+ and 3+ are unsymmetrical and display
a quasi-plateau in the 400–440 nm region. These subtle changes
may help to differentiate Cu(II)-phenoxyl radicals with varying
local environments.
oxidised Cu(II)-phenoxyl radical species are modulated by steric
and H-bonding effects. These biomimetic studies are relevant to
understand the factors that govern the reactivity of the Cu(II)-
Tyrosyl radical moiety of GO.
Acknowledgements
The authors wish to acknowledge the University of Bar-Ilan for
funding and the Soref-Kolman Foundation for the provision of a
postdoctoral fellowship to H.A.
Notes and references
‡ Crystal data for 3. C42H62CuN4O2, Mr = 718.50, monoclinic, space group
˚
P21/c (no. 14), a = 25.4688(7), b = 9.5148(3), c = 16.9516(5) A, b =
◦
3
91.368(10) , U = 4106.7(2) A , Z = 4, rcald = 1.162 g cm-3, m(Mo-Ka) =
˚
0.569 mm-1, 46 126 reflections measured, 9913 unique, T = 120 K, final
R1 = 0.0514 (for 7891 reflections with I > 2s(I)), wR2 (all data) = 0.1342.
CCDC number 846432.
1 J. W. Whittaker, Chem. Rev., 2003, 103, 2347.
2 J. Stubbe and W. A. van der Donk, Chem. Rev., 1998, 98, 705; J. Stubbe,
Chem. Commun., 2003, 2511.
3 (a) S. Itoh, M. Taki and S. Fukuzumi, Coord. Chem. Rev., 2000, 198,
3; (b) B. A. Jazdzewski and W. B. Tolman, Coord. Chem. Rev., 2000,
200–202, 633; (c) P. Chaudhuri and K. Wieghardt, Prog. Inorg. Chem.,
2001, 50, 151; (d) F. Thomas, Eur. J. Inorg. Chem., 2007, 2379.
4 (a) L. Benisvy, A. J. Blake, D. Collison, E. S. Davies, C. D. Garner, E. J. L.
McInnes, J. McMaster, G. Whittaker and C. Wilson, Chem. Commun.,
2001, 1824; (b) L. Benisvy, A. J. Blake, D. Collison, E. S. Davies, C.
D. Garner, E. J. L. McInnes, J. McMaster, G. Whittaker and C. Wilson,
Dalton Trans., 2003, 1975; (c) L. Benisvy, E. Bill, A. J. Blake, D. Collison,
E. S. Davies, C. D. Garner, E. J. L. McInnes, J. McMaster, S. Ross and
C. Wilson, Dalton Trans., 2006, 258.
Fig. 5 UV-vis spectra (straight line) of 1 (red), 2 (green) and 3 (blue) and
the electrochemically generated (dotted line) 1+ (red), 2+(green) and 3+
(blue) in CH2Cl2 (ca. 1 mM) containing [NBu4n][PF6] (0.15 M) at 298 K.
Inset: enlarged 300–700 nm region.
5 G. M. Zats, H. Arora, R. Lavi, D. Yufit and L. Benisvy, Dalton Trans.,
2011, 40, 10889.
6 (a) T. Maki, Y. Araki, Y. Ishida, O. Onomura and Y. Matsumura, J. Am.
Chem. Soc., 2001, 123, 3371; (b) I. J. Rhile and J. M. Mayer, J. Am.
Chem. Soc., 2004, 126, 12718; (c) F. Thomas, O. Jarjayes, M. Jamet, S.
Hamman, E. Saint–Aman, C. Duboc and J. L. Pierre, Angew. Chem.,
Int. Ed., 2004, 43, 594; (d) L. Benisvy, R. Bittl, E. Bothe, C. D. Garner,
J. McMaster, S. Ross, C. Teutloff and F. Neese, Angew. Chem., Int. Ed.,
2005, 44, 5314; (e) I. J. Rhile and J. M. Mayer, Angew. Chem., Int. Ed.,
2005, 44, 1598; (f) C. Costentin, M. Robert and J. M. Saveant, J. Am.
Chem. Soc., 2006, 128, 4552; (g) I. J. Rhile, T. F. Markle, H. Nagao, A.
G. DiPasquale, O. P. Lam, M. A. Lockwood, K. Rotter and J. M. Mayer,
J. Am. Chem. Soc., 2006, 128, 6075; (h) L. Benisvy, D. Hammond, D. J.
Parker, E. S. Davies, C. D. Garner, J. McMaster, C. Wilson, F. Neese, E.
Bothe, R. Bittl and C. Teutloff, J. Inorg. Biochem., 2007, 101, 1859; (i) T.
F. Markle and J. M. Mayer, Angew. Chem., Int. Ed., 2008, 47, 738; (j) T.
F. Markle, I. J. Rhile, A. G. DiPasquale and J. M. Mayer, Proc. Natl.
Acad. Sci. U. S. A., 2008, 105, 8185.
The electrochemical one-electron oxidations of 2 and 3 are
accompanied by a significant reduction in the intensity of their
EPR signals, i.e. 2+ and 3+ in CH2Cl2 at 77 K are essentially EPR
silent, only a residual Cu(II) signal, ~<5% of the intensity of the
parent complex, was observed for 2 and 3 (see ESI†). The lack
of an EPR signal for 2+ and 3+ is consistent with an S = 0 or 1
(with a very large zero-field splitting) ground state, resulting from
1
2
1
2
magnetic coupling between an S = Cu(II) centre and an S =
coordinated radical ligand, as observed for 1+ and other Cu(II)-
phenoxyl radical complexes [Cu(II)(RL)(RL∑)]+.3
7 F. E. Mabbs, D. Collison, Electron Paramagnetic Resonance of d-
Transition Complexes, Elsevier, Amsterdam, 1992, 405.
8 (a) A. W. Addison in Copper Coordination Chemistry: Biochemical and
Inorganic Perspectives, K. D. Karlin, J. Zubieta, ed., J. Wiley and Sons,
New-York, 1983, 109; (b) J. Peisach and W. R. Blumberg, Arch. Biochem.
Biophys., 1974, 165, 691.
Conclusions
We herein have demonstrated that the redox, spectroscopic and
chemical properties of Cu(II)-phenolate and its corresponding
This journal is
The Royal Society of Chemistry 2012
Dalton Trans., 2012, 41, 47–49 | 49
©