B. Wang, P.-P. Zhang / Tetrahedron Letters 53 (2012) 119–122
121
Table 2
Acknowledgments
Diastereoconvergent Grignard additions to 2a,b
O
S
H
O
S
R
Financial support from the National Natural Science Foundation
of China (20602008, 20832005, and 21072032) is gratefully
acknowledged. We also thank the IBS (Fudan University) for
funding.
*
5
*
O
O
RMgBr, DCM
N
N
H
O
O
3
3
O
O
Bn
O
Bn
O
2a, 2b
Imine
3a-l
3 (%)a
Supplementary data
Entry
R, concn, co-solvent
drb
1
2
3
2a
2b
2a
2b
2a
2a
2a
2b
2a
2b
Vinyl, 0.7 M, THF
Vinyl, 0.7 M, THF
Ph, 0.7 M, THF
Ph, 0.7 M, THF
Ph, 0.7 M, THF
Ph, 0.7 M, THF
Et, 0.7 M, THF
Et, 0.7 M, THF
TMS-C„C, 0.7 M, THF
TMS-C„C, 0.7 M, THF
3a, 87
3b, 85
50:1
50:1
15:1
25:1
nd
15:1
20:1
20:1
18:1
30:1
Supplementary data (Experimental procedures and spectral
data.) associated with this article can be found, in the online ver-
3c, 3d, 90
3e, 3f, 88
NR
3c, 3d, 42
3g, 3h, 83
3i, 3j, 75
3k, 65
4
5c
6d
7
References and notes
8
9e
10e
1. For leading reviews, see: (a) Robak, M. T.; Herbage, M. A.; Ellman, J. A. Chem.
Rev. 2010, 110, 3600; (b) Ferreira, F.; Botuha, C.; Chemla, F.; Pérez-Luna, A.
Chem. Soc. Rev. 2009, 38, 1162; (c) Lin, G.-Q.; Xu, M.-H.; Zhong, Y.-W.; Sun, X.-
W. Acc. Chem. Res. 2008, 41, 831.
3l, 80
a
b
c
Combined isolated yields of both diastereomers.
Ratio of (5R)- to (5S)-, determined by 1H NMR of the crude adducts.
THF as the solvent for substrate.
2. For examples of predominant stereo-induction of chiral t-BS over that of
a-
substituents, see: (a) Voituriez, A.; Pérez-Luna, A.; Ferreira, F.; Botuha, C.;
Chemla, F. Org. Lett. 2009, 11, 931; (b) Hjelmgaard, T.; Faure, S.; Lemoine, P.;
Viossat, B.; Aitken, D. J. Org. Lett. 2008, 10, 841; (c) Evans, J. W.; Ellman, J. A. J.
Org. Chem. 2003, 68, 9948; (d) Liu, J.; Li, Y.; Hu, J. J. Org. Chem. 2007, 72, 3119;
(e) Prakash, G. K. S.; Mandal, M.; Olah, G. A. J. Am. Chem. Soc. 2002, 124, 6538.
3. (a) McMahon, J. P.; Ellman, J. A. Org. Lett. 2004, 6, 1645; (b) Risseeuw, M. D. P.;
Mazurek, J.; van Langenvelde, A.; van der Marel, G. A.; Overkleeft, H. S.;
Overhand, M. Org. Biomol. Chem. 2007, 5, 2311; (c) Wang, B. J. Org. Chem. 2010,
75, 6012. This is not to be confused with reversal of stereoselectivity, which is
relatively common for this chiral auxiliary upon variation of reaction
conditions (solvent, countercation, additive).
4. (a) Chen, B.-L.; Wang, B.; Lin, G.-Q. J. Org. Chem. 2010, 75, 941; (b) Wang, B.; Lin,
G.-Q. Eur. J. Org. Chem. 2009, 5038; (c) Wang, B.; Wang, Y.-J. Org. Lett. 2009, 11,
3410; (d) Wang, B.; Zhong, Z.; Lin, G.-Q. Org. Lett. 2009, 11, 2011; (e) Wang, B.;
Liu, R.-H. Eur. J. Org. Chem. 2009, 2845; (f) Liu, R.-H.; Fang, K.; Wang, B.; Xu, M.-
H.; Lin, G.-Q. J. Org. Chem. 2008, 73, 3307; (g) Wang, B.; Fang, K.; Lin, G.-Q.
Tetrahedron Lett. 2003, 44, 7981; (h) Wang, B.; Yu, X.-M.; Lin, G.-Q. Synlett 2001,
904; (i) Liu, D.-G.; Wang, B.; Lin, G.-Q. J. Org. Chem. 2000, 65, 9114.
5. Sun, Z.-H.; Wang, B. J. Org. Chem. 2008, 73, 2462.
d
e
Inverse addition of 2a in CH2Cl2 to PhMgBr-THF, 50% conversion.
At ꢀ20 °C, 12 h.
Table 3
Summary of C-5 configuration determination
Correlation
1) K2CO3/MeOH
2) HN=NH
HN=NH
method A:
vinyl
Et
TMS-C≡ C
adducts
adducts
adducts
same t-BS config.
same C-5 config.
Correlation
method B:
1) HCl/MeOH
2) ArCOCl
adducts
same benzamide
different t-BS config.
same C-5 config.
Adduct
t-BS
R
C-5
Determination method
6. For leading references, see: (a) Racine, E.; Bello, C.; Gerber-Lemaire, S.; Vogel,
P.; Py, S. J. Org. Chem. 2009, 74, 1766; (b) Karanjule, N. S.; Markad, S. D.; Shinde,
V. S.; Dhavale, D. D. J. Org. Chem. 2006, 71, 4667; (c) Karanjule, N. S.; Markad, S.
D.; Dhavale, D. D. J. Org. Chem. 2006, 71, 6273.
7. Masson, G.; Philouze, C.; Py, S. Org. Biomol. Chem. 2005, 3, 2067.
8. For pyranose-derived sulfinimines, see: (a) Raunkjær, M.; Oualid, F. E.; van der
Marel, G. A.; Overkleeft, H. S.; Overhand, M. Org. Lett. 2004, 6, 3167; For a
ribose-derived t-BS imine, see: (b) Luo, Y.-C.; Zhang, H.-H.; Xu, P.-F. Synlett
2009, 833. No anomalous result was reported.
9. (a) Drueckhammer, D. G.; Wong, C.-H. J. Org. Chem. 1985, 50, 5912; (b) Fleet, G.
W. J.; Smith, P. W. Tetrahedron 1987, 43, 971.
10. Nacro, K.; Lee, J.; Barchi, J. J.; Lewin, N. E.; Blumberg, P. M.; Marquez, V. E.
Tetrahedron 2002, 58, 5335.
3a
3b
3c
3d
3e
3f
3g
3h
3i
SS-
RS-
SS-
SS-
RS-
RS-
SS-
SS-
RS-
RS-
SS-
RS-
Vinyl
Vinyl
Ph
Ph
Ph
Ph
Et
Et
R
R
R
S
R
S
R
S
R
S
X-ray
Correlate with 3a (B)
Infer from 3d
X-ray
Infer from 3f
Correlate with 3d (B)
Correlate with 3a (A)
Infer from 3g
Correlate with 3b (A)
Infer from 3i
Et
Et
3j
3k
3l
TMS-C„C
TMS-C„C
R
R
Correlate with 3g (A)
Correlate with 3i (A)
11. Liu, G.; Cogan, D. A.; Owens, T. D.; Tang, T. P.; Ellman, J. A. J. Org. Chem. 1999, 64,
1278.
12. General procedures: To a cooled (ꢀ78 °C) solution of 2a (353 mg, 0.93 mmol) in
CH2Cl2 (5 mL) under Ar was added dropwise vinylmagnesium bromide (3.3 mL,
0.7 M in THF, 2.31 mmol), and the solution was stirred at the same
temperature for 1 h. The reaction was quenched by satd aq NH4Cl, diluted
with ether (50 mL), the organic layer was washed with brine, dried (Na2SO4),
and concentrated under reduced pressure. The residue was purified by silica
gel flash column chromatography eluated with EtOAc/Hexane. Compound 3a:
high drs observed for Grignard additions to 2a,b are still remark-
able and synthetically useful. In addition, compared to N-benzyl,
the N-t-BS group also enjoyed the benefit of easy removal. The ori-
gin of this unexpected diastereoconvergence is yet to be rational-
ized; nevertheless, it cannot be attributed solely to the
carbohydrate moiety, for the stereo-induction of the latter cannot
overcome that of the chiral sulfinyl completely. The present case
suggested subtle interplay between the two chiral auxiliaries.
To summarize, we report a rare example of the diastereoconver-
½ ꢂ
a 2D3 +6.1 (c 1.13, CHCl3); 1H NMR (500 MHz, CDCl3) d 7.39–7.26 (m, 5H), 6.00
(ddd, 1H, J = 17.2, 10.5, 5.4 Hz), 5.93 (d, 1H, J = 3.8 Hz), 5.49 (d, 1H, J = 17.2 Hz),
5.29 (d, 1H, J = 10.5 Hz), 4.66–4.45 (AB, 2H, JAB = 11.0 Hz), 4.64 (m, 1H), 4.32–
4.25 (m, 1H), 4.24 (dd, 1H, J = 7.5, 3.2 Hz), 4.11 (d, 1H, J = 3.2 Hz), 3.92 (d, 1H,
J = 8.2 Hz), 1.50 (s, 3H), 1.32 (s, 3H), 1.09 (s, 9H). 13C NMR (125 MHz, CDCl3) d
136.7, 136.3, 128.5, 128.1, 127.9, 117.7, 111.6, 105.0, 82.7, 81.4, 81.3, 71.9,
57.7, 56.0, 26.7, 26.2, 22.5. HR-ESI-MS m/z Calcd for C21H31NO5SNa (M+Na+)
gent addition of Grignard reagents to a pair of
D-xylofuranose-
432.1821. Found 432.1813. Compound 3b: ½a D23
ꢂ
ꢀ46.4 (c 2.23, CHCl3); 1H NMR
based t-butanesulfinyl aldimines 2a and 2b. Both the RS- and SS-
imines afforded predominantly (5R)-adducts. The use of THF as
the co-solvent for the Grignard reagents is essential to achieve high
and consistent diastereoselectivity. On the other hand, precaution
should be paid in assigning the stereochemistry of nucleophilic
additions to polysubstituted N-t-BS imines. In view of the versatile
synthetic potentials of the vinyl and alkynyl groups, the adducts
can be exploited in the asymmetric synthesis of azasugars or re-
lated chiral scaffolds. Work along this line is currently in progress
in this laboratory.
(500 MHz, CDCl3) d 7.39–7.26 (m, 5H), 5.98 (d, 1H, J = 3.5 Hz), 5.91 (ddd, 1H,
J = 17.2, 10.4, 6.3 Hz), 5.35 (d, 1H, J = 17.2 Hz), 5.24 (d, 1H, J = 10.4 Hz), 4.68–
4.61 (AB, 2H, JAB = 11.2 Hz), 4.64 (m, 1H), 4.32–4.26 (m, 1H), 4.16 (d, 1H,
J = 3.3 Hz), 4.13 (dd, 1H, J = 7.6, 3.3 Hz), 3.66 (d, 1H, J = 7.5 Hz), 1.48 (s, 3H), 1.31
(s, 3H), 1.11 (s, 9H). 13C NMR (125 MHz, CDCl3) d 137.1, 136.2, 128.4, 128.0,
127.9, 117.2, 111.5, 105.0, 81.9, 81.8, 81.3, 71.6, 57.0, 55.7, 26.7, 26.1, 22.4. HR-
ESI-MS m/z Calcd for C21H31NO5SNa (M+Na+) 432.1821. Found 432.1814.
13. CCDC 720014 contains the crystallographic data for 3a. These data can be
obtained free of charge from the Cambridge Crystallographic Data Centre via
14. Compound 4a: ½a D21
ꢂ
+23.1 (c 0.72, CHCl3); 1H NMR (500 MHz, CDCl3) d 9.03 (t,
1H, J = 2.0 Hz), 8.61 (d, 2H, J = 2.1 Hz), 7.92 (d, 1H, J = 8.1 Hz), 7.30–7.26 (m,