Page 5 of 7
Journal of the American Chemical Society
ylsilanes and Heteroarylsilanes. Angew. Chem., Int. Ed. 2016, 55, 11810–
ASSOCIATED CONTENT
11813. (b) Pu, X.; Hu, J.; Zhao, Y.; Shi, Z. Nickel-Catalyzed Decarbonyla-
tive Borylation and Silylation of Esters. ACS Catal. 2016, 6, 6692–6698.
(c) Yue, H.; Guo, L.; Liao, H.-H.; Cai, Y.; Zhu, C.; Rueping, M. Selective
Reductive Removal of Ester and Amide Groups from Arenes and Het-
eroarenes through Nickel-Catalyzed C–O and C–N Bond Activation.
Angew. Chem., Int. Ed. 2017, 56, 3972–3976. (d) Takise, R.; Isshiki, R.;
Muto, K.; Itami, K.; Yamaguchi, J. Decarbonylative Diaryl Ether Synthesis
by Pd and Ni Catalysis. J. Am. Chem. Soc. 2017, 139, 3340–3343. (e)
Isshiki, R.; Muto, K.; Yamaguchi, J. Decarbonylative C−P Bond Formation
Using Aromatic Esters and Organophosphorus Compounds. Org. Lett.
2018, 20, 1150–1153. (f) Lee, S.-C.; Liao, H.-H.; Chatupheeraphat, A.;
Rueping, M. Nickel-Catalyzed C–S Bond Formation via Decarbonylative
Thioetherification of Esters, Amides and Intramolecular Recombination
Fragment Coupling of Thioesters. Chem. Eur. J. 2018, 24, 3608–3612.
Related C–P bond formation using amides, see: (g) Liu, C.; Szostak, M.
Decarbonylative Phosphorylation of Amides by Palladium and Nickel
Catalysis: The Hirao Cross-Coupling of Amide Derivatives. Angew. Chem.,
Int. Ed. 2017, 56, 12718–12722.
(4) For selected examples of non-decarbonylative transformations of
aromatic esters using metal catalysis, see: (a) Tatamidani, H.; Kakiuchi, F.;
Chatani, N. A New Ketone Synthesis by Palladium-Catalyzed Cross-
Coupling Reactions of Esters with Organoboron Compounds. Org. Lett.
2004, 6, 3597–3599. (b) Hie, L.; Nathel, N. F. F.; Hong, X.; Yang, Y.-F.;
Houk, K. N.; Garg, N. K. Nickel-Catalyzed Activation of Acyl C–O Bonds
of Methyl Esters. Angew. Chem., Int. Ed. 2016, 55, 2810–2814. (c) Halima,
T. B.; Zhang, W.; Yalaoui, I.; Hong, X.; Yang, Y.-F.; Houk, K. N.; Newman,
S. G. Palladium-Catalyzed Suzuki–Miyaura Coupling of Aryl Esters. J. Am.
Chem. Soc. 2017, 139, 1311–1318. (d) Halima, T. B.; Vandavasi, J. K.;
Shkoor, M.; Newman, S. G. A Cross-Coupling Approach to Amide Bond
Formation from Esters. ACS Catal. 2017, 7, 2176–2180. (e) Shi, S.; Lei, P.;
1
2
3
4
5
6
7
8
Supporting Information
The Supporting Information is available free of charge on the ACS
Publications website.
Experimental procedures and spectroscopic data for compounds in-
cluding 1H-, 13C, 31P NMR spectra (PDF)
AUTHOR INFORMATION
Corresponding Author
*junyamaguchi@waseda.jp
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
ORCID
Kei Muto: 0000-0001-8301-4384
Junichiro Yamaguchi: 0000-0002-3896-5882
Notes
No competing financial interests have been declared.
ACKNOWLEDGMENT
This work was supported by JSPS KAKENHI Grant Number
JP19H02726 (to J.Y.), JP18H04661 (Hybrid Catalysis), and
JP19K15573 (to K.M.). We thank Prof. Masahiro Terada (Tohoku
University) for fruitful discussion about the reaction mechanism. The
Materials Characterization Central Laboratory in Waseda University is
acknowledged for the support of HRMS measurement.
REFERENCES
(1) For reviews on cross-coupling of aromatic esters, see: (a) Takise, R.;
Muto, K.; Yamaguchi, J. Cross-Coupling of Aromatic Esters and Amides.
Chem. Soc. Rev. 2017, 46, 5864–5888. (b) Guo, L.; Rueping, M. Decar-
bonylative Cross-Couplings: Nickel Catalyzed Functional Group Intercon-
version Strategies for the Construction of Complex Organic Molecules.
Acc. Chem. Res. 2018, 51, 1185–1195.
Szostak, M. Pd-PEPPSI:
A General Pd-NHC Precatalyst for Suzu-
ki−Miyaura Cross-Coupling of Esters by C−O Cleavage. Organometallics
2017, 36, 3784−3789. (f) Li, G.; Shi, S.; Lei, P.; Szostak, M. Pd-PEPPSI:
Water-Assisted Suzuki−Miyaura Cross-Coupling of Aryl Esters at Room
Temperature Using a Practical Palladium-NHC (NHC=N-Heterocyclic
Carbene) Precatalyst. Adv. Synth. Catal. 2018, 360, 1538–1543.
(2) For selected examples of decarbonylative C–C bond formation of
aromatic esters using metal catalysis, see: (a) Gooßen, L. J.; Paetzold, J. Pd-
Catalyzed Decarbonylative Olefination of Aryl Esters: Towards a Waste-
Free Heck Reaction. Angew. Chem., Int. Ed. 2002, 41, 1237–1241. (b)
Amaike, K.; Muto, K.; Yamaguchi, J.; Itami, K. Decarbonylative C–H Cou-
pling of Azoles and Aryl Esters: Unprecedented Nickel Catalysis and Appli-
cation to the Synthesis of Muscoride A. J. Am. Chem. Soc. 2012, 134,
13573–13576. (c) Muto, K.; Yamaguchi, J.; Musaev, D. G.; Itami, K. De-
carbonylative Organoboron Cross-Coupling of Esters by Nickel Catalysis.
Nat. Commun. 2015, 6, 7508–7515. (d) Liu, X.; Jia, J.; Rueping, M. Nick-
el-Catalyzed C–O Bond-Cleaving Alkylation of Esters: Direct Replacement
of the Ester Moiety by Functionalized Alkyl Chains. ACS Catal. 2017, 7,
4491–4496. (e) Chatupheeraphat, A.; Liao, H.-H.; Srimontree, W.; Guo,
L.; Minenkov, Y.; Poater, A.; Cavallo, L.; Rueping, M. Ligand-Controlled
Chemoselective C(acyl)–O Bond vs C(aryl)–C Bond Activation of Aro-
matic Esters in Nickel Catalyzed C(sp2)−C(sp3) Cross-Couplings. J. Am.
Chem. Soc. 2018, 140, 3724–3735. (f) Matsushita, K.; Takise, R.; Hisada,
T.; Suzuki, S.; Isshiki, R.; Itami, K.; Muto, K.; Yamaguchi, J. Pd-Catalyzed
Decarbonylative C–H Coupling of Azoles and Aromatic Esters. Chem.
Asian J. 2018, 13, 2393–2396. (g) Okita, T.; Muto, K.; Yamaguchi, J. De-
carbonylative Methylation of Aromatic Esters by a Nickel Catalyst. Org.
Lett. 2018, 20, 3132–3135. (h) Masson-Makdissi, J.; Vandavasi, J. K.;
Newman, S. G. Switchable Selectivity in the Pd-Catalyzed Alkylative Cross-
Coupling of Esters. Org. Lett. 2018, 20, 4094–4098. (i) Okita, T.; Ko-
matsuda, M.; Saito, A. N.; Hisada, T.; Takahara, T. T.; Nakayama, K. P.;
Isshiki, R.; Takise, R.; Muto, K.; Yamaguchi, J. Dibenzofuran Synthesis:
Decarbonylative Intramolecular C–H Arylation of Aromatic Esters. Asian J.
Org. Chem. 2018, 7, 1358–1361.
(5) For selected example of benzylic phosphorus compounds, see: (a)
Ma, Y.; Chen, F.; Bao, J.; Wei, H.; Shi, M.; Wang, F. Practical Way for the
Synthesis of Phosphine Oxides and Phosphine Sulfides from Benzyl Alco-
hol Derivatives. Tetrahedron Lett. 2016, 57, 2465–2467. (b) Lee, B.; Mihai,
M. T.; Stojalnikova, V.; Phipps, R. J. Ion-Pair-Directed Borylation of Aro-
matic Phosphonium Salts. J. Org. Chem. 2019, 84, 13124–13134. (c) Chen,
S.; Ruan, Y.; Brown, J. D.; Hadad, C. M.; Badjić, J. D. Recognition Charac-
teristics of an Adaptive Vesicular Assembly of Amphiphilic Baskets for
Selective Detection and Mitigation of Toxic Nerve Agents. J. Am. Chem.
Soc. 2014, 136, 17337–17342. (d) Deng, L.; Diao, J.; Chen, P.; Pujari, V.;
Yao, Y.; Cheng, G.; Crick, D. C.; Prasad, B. V. V.; Song, Y. Inhibition of 1-
Deoxy-D-Xylulose-5-Phosphate Reductoisomerase by Lipophilic Phospho-
nates: SAR, QSAR, and Crystallographic Studies. J. Med. Chem. 2011, 54,
4721–4734. (e) Fonseca, E. M. B.; Trivella, D. B. B.; Scorsato, V.; Dias, M.
P.; Bazzo, N. L.; Mandapati, K. R.; de Oliveira, F. L. Crystal Structures of
the Apo form and a Complex of Human LMW-PTP with a Phosphonic
Acid Provide New Evidence of a Secondary Site Potentially Related to the
Anchorage of Natural Substrates. Bioorg. Med. Chem. 2015, 23, 4462–
4471. (f) Beddoe, R. H.; Andrews, K. G.; Magné, V.; Cuthbertson, J. D.;
Saska, J.; Shannon-Little, A. L.; Shanahan, S. E.; Sneddon, H. F.; Denton, R.
M. Redox-Neutral Organocatalytic Mitsunobu Reactions. Science 2019,
365, 910–914. (g) Olsson, R. I.; Jacobson, I.; Boström, J.; Fex, T.; Björe, A.;
Olsson, C.; Sundell, J.; Gran, U.; Öhrn, A.; Nordin, A.; Gyll, J.; Thor-
stensson, M.; Hayen, A.; Aplander, K.; Hidestal, O.; Jiang, F.; Linhardt, G.;
Forsström, E.; Collins, T.; Sundqvist, M.; Lindhardt, E.; Astrand, A.; Löf-
berg, B. Synthesis and Evaluation of Diphenylphosphinic Amides and Di-
phenylphosphine Oxides as Inhibitors of Kv1.5. Bioorg. Med. Chem. Lett.
2013, 23, 706–710.
(3) For selected examples of decarbonylative C–heteroatom bond for-
mation of aromatic esters using metal catalysis, see: (a) Guo, M. S. L.;
Chatupheeraphat, M. S. A.; Rueping, M. Decarbonylative Silylation of
Esters by Combined Nickel and Copper Catalysis for the Synthesis of Ar-
(6) For other conditions using nickel catalysis, see the Supporting In-
formation for details.
ACS Paragon Plus Environment