Organometallics
Communication
C. W.; Nyholm, R. S. J. Organomet. Chem. 1972, 40, C70−C72.
(c) Deeming, A. J.; Kimber, R. E.; Underhill, M. J. Chem. Soc., Dalton
Trans. 1973, 2589−2596. (d) Bruce, M. I.; Guss, J. M.; Mason, R.;
Skelton, B. I.; White, A. H. J. Organomet. Chem. 1983, 251, 261−271.
(e) Adams, R. D.; Captain, B.; Fu, W.; Smith, M. D. J. Organomet.
Chem. 2002, 651, 124−131. (f) Bruce, M. I.; Humphrey, P. A.; bin
Shawkataly, O.; Snow, M. R.; Tiekink, E. R. T.; Cullen, W. R.
Organometallics 1990, 9, 2910−2919.
found in the benzyne ligand in 3. The Au- and H-bridged
bonds (Os1−Os2 = 2.8950(6) Å, Os1−Os3 = 2.9882(7) Å) are
longer than the remaining Os−Os bond (Os2−Os3 =
2.7494(6) Å). The naphthyne ligand in 5 is a 4-electron
donor, and the metal atoms thus contain a total of 48 electrons
and are electronically saturated.
This work has demonstrated the multicenter conversion of
η1-bridging aryl ligands into η2-triply bridging aryne ligands. It
seems plausible that other complexes containing triply bridging
aryne ligands may be formed via unobserved intermediates
containing η1-bridging aryl ligands. The existence of two
isomeric forms of the bridging naphthyl ligand and their facile
interconversion in compound 4 is intriguing and raises the
possibility of two slightly different pathways, via 4a or 4b, for
the formation of the triply bridging naphthyne ligand in 5 (see
Scheme 1). Efforts to try to distinguish between these two
pathways by computational methods are in progress.
(3) Arce, A. J.; Deeming, A. J. J. Chem. Soc., Dalton Trans. 1982,
1155−1157.
(4) (a) Chan, K. H.; Leong, W. K.; Mak, K. H. G. Organometallics
2006, 25, 250−259. (b) Leong, W. K.; Chen, G. Organometallics 2001,
20, 2280−2287.
(5) Adams., R. D.; Katahira, D. A.; Yang, L.-W. Organometallics 1982,
1, 235−239.
(6) Hartwig, J. F.; Bergman, R. G.; Andersen, R. A. J. Am. Chem. Soc.
1991, 113, 3404−3418.
(7) Johnson, B. F. G.; Nairn, J. G. M.; Brown, D. B.; Lewis, J.; Gallop,
M.; Parker, D. G. Chem. Eur. J. 1995, 1, 252−260.
(8) Partyka, D. V.; Zeller, M.; Hunter, A. D.; Gray, T. G. Angew.
Chem., Int. Ed. 2006, 45, 8188−8191.
(9) (a) Raubenheimer, H. G.; Schmidbaur, H. Organometallics 2012,
31, 2507−2522. (b) Stone, F. G. A. Angew. Chem., Int. Ed. Engl. 1984,
23, 89−99.
(10) Arce, A. J.; Arrojo, P.; Deeming, A. J.; De Sanctis, Y. J. Chem.
Soc., Chem. Commun. 1991, 1491−1492.
Scheme 1
(11) (a) Broach, R. W.; Williams, J. M. Inorg. Chem. 1979, 18, 314−
319. (b) Churchill, M. R.; Hollander, F. J.; Hutchinson, J. P. Inorg.
Chem. 1977, 16, 2697−2700. (c) Allen, V. F.; Mason, R.; Hitchcock, P.
B. J. Organomet. Chem. 1977, 140, 297−307.
(12) Burgess, K.; Johnson, B. F. G.; Kaner, D. A.; Lewis, J.; Raithby,
P. R.; Syed-Mustaffa, S. N. A. B. J. Chem. Soc., Chem. Commun. 1983,
455−457.
(13) Johnson, B. F. G.; Kaner, D. A.; Lewis, J.; Raithby, P. R. J.
Organomet. Chem. 1981, 215, C33−C37.
(14) See the Supporting Information for additional details.
(15) Osawa, M.; Hoshino, M.; Hashizume, D. Dalton Trans. 2008,
2248−2252.
(16) Although they are rare, some examples of η2-bridging phenyl
ligands have been observed previously: (a) Adams, R. D.; Kan, Y.;
Zhang, Q. Organometallics 2011, 30, 328−333. (b) Farrugia, L. J.;
Miles, A. D.; Stone, F. G. A. J. Chem. Soc., Dalton Trans. 1984, 2415−
ASSOCIATED CONTENT
2422. (c) Hoferkamp, L. A.; Rheinwald, G.; Stoeckli-Evans, H.; Suss-
̈
■
Fink, G. Organometallics 1996, 15, 704−712. (d) Shima, T.; Suzuki, H.
Organometallics 2005, 24, 1703−1708. (e) Akita, M.; Hua, R.; Oku, T.;
Tanaka, M.; Moro-oka, Y. Organometallics 1996, 15, 4162−4177.
(17) A triply bridging diaminonaphthyl ligand having a η2-C,C
coordination was observed in the compound Os3(CO)9[μ3-1,8-
S
* Supporting Information
Text, figures, tables, and CIF files giving details of the synthesis
and characterizations of compounds 2−5, computational
analyses for 2, and data for each of the structural analyses.
This material is available free of charge via the Internet at
(NH ) C H ](μ-H); see: Cabeza, J. A.; Noth, H.; de Jesus Rosales-
̈
2
2
10
5
Hoz, M.; Sanchez-Cabrera, G. Eur. J. Inorg. Chem. 2000, 2327−2332.
(18) H NMR and 31P NMR spectra of solutions of 4 in toluene-d8
1
AUTHOR INFORMATION
solvent at room temperature and at −80 °C indicate the presence of
only one isomer, and on the basis of color, it is the pink isomer 4b.
■
Corresponding Author
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This research was supported by the following grants from the
National Science Foundation: CHE-1111496 and CHE-
1048629.
REFERENCES
■
(1) Goudsmit, R. J.; Johnson, B. F. G.; Lewis, J.; Raithby, P. R.;
Rosales, M. J. J. Chem. Soc., Dalton Trans. 1983, 2257−2261.
(2) (a) Bradford, C. W.; Nyholm, R. S.; Gainsford, G. J.; Guss, J. M.;
Ireland, P. R.; Mason, R. J. Chem. Soc., Chem. Commun. 1972, 87−89.
(b) Gainsford, G. J.; Guss, J. M.; Ireland, P. R.; Mason, R.; Bradford,
2964
dx.doi.org/10.1021/om300235n | Organometallics 2012, 31, 2961−2964