silver triflate or copper acetate was reduced. The result could
not be improved when the temperature was elevated.
We next explored the reaction scope under the optimized
conditions (10 mol% of silver triflate, 20 mol% of copper
acetate, DCE/DMF, rt). Table 2 shows the summary of results for
the evaluation of various substituted N0-(2-alkynylbenzylidene)-
hydrazides with allenoate under dioxygen. The presence of carbonyl
group adds flexibility to further elaborate the final products. Not
only aldehyde but also ketone could be formed, depending on the
allenoates utilized. For example, when methyl or phenyl-substituted
allenoate was employed in the reaction of N0-(2-alkynyl-
benzylidene)hydrazide 1a under the standard conditions, the
corresponding ketone was obtained as expected (Table 2,
entries 2 and 3). Moreover, incorporation of the alkyl
substituents into the triple bond does not hamper the efficiency
of the process. For instance, the reactions proceeded smoothly
when N0-(2-alkynylbenzylidene)hydrazide 1b or 1c was used in
the reactions of allenoate under dioxygen (Table 2, entries
4–7). The nature of the substituents on the aromatic ring of the
N0-(2-alkynylbenzylidene)hydrazides can include methyl, methoxy,
chloro, and fluoro groups. Furthermore, heteroaromatic-
substituted N0-(2-alkynylbenzylidene)hydrazide 1k also underwent
this transformation, leading to the desired product 3p in 50% yield
(Table 2, entry 16).
In summary, a cascade reaction of N0-(2-alkynylbenzylidene)-
hydrazide with allenoate in the presence of dioxygen co-catalyzed
by silver triflate and copper(II) acetate under mild conditions is
described, which provides an efficient approach to 2-carbonyl
H-pyrazolo[5,1-a]isoquinolines. The silver triflate–copper(II)
acetate cooperative catalysis is essential for the successful
transformation. A possible mechanism is illustrated, which
indicates that the reaction proceeds through a peroxy–
copper(III) intermediate. Activation of dioxygen by using the
strategy of cooperative catalysis in other transformations is in
progress in our laboratory, and the results will be reported in
due course.
L. Kiss, J. Wang, R. H. Spencer, S. A. Kane, R. B. White, R. Zhang,
K. D. Anderson, N. J. Liverton, C. J. McIntyre, D. C. Beshore,
G. D. Hartman and C. J. Dinsmore, J. Med. Chem., 2006, 49, 6954.
2 For selected examples, see: (a) B. A. Johns, K. S. Gudmundsson,
E. M. Turner, S. H. Allen, V. A. Samano, J. A. Ray, G. A. Freeman,
F. L. Boyd Jr., C. J. Sexton, D. W. Selleseth, K. L. Creech and
K. R. Moniri, Bioorg. Med. Chem., 2005, 13, 2397; (b) K. L. Stevens,
D. K. Jung, M. J. Alberti, J. G. Badiang, G. E. Peckham,
J. M. Veal, M. Cheung, P. A. Harris, S. D. Chamberlain and
M. R. Peel, Org. Lett., 2005, 7, 4753; (c) J. J. Mousseau,
A. Fortier and A. B. Charette, Org. Lett., 2010, 12, 516.
3 Z. Chen and J. Wu, Org. Lett., 2010, 12, 4856.
4 For selected reviews, see: (a) A. Hoffman-Roder and N. Krause,
¨
Angew. Chem., Int. Ed., 2004, 43, 1196; (b) S. Ma, Chem. Rev., 2005,
105, 2829; (c) S. Ma, Aldrichimica Acta, 2007, 40, 91;
(d) M. Brasholz, H.-U. Reissig and R. Zimmer, Acc. Chem. Res.,
2009, 42, 45; (e) S. Ma, Acc. Chem. Res., 2009, 42, 1679; (f) S. Ma,
Acc. Chem. Res., 2003, 36, 701; (g) N. Krause and A. S. K. Hashmi,
Modern Allene Chemistry, Wiley-VCH, Weinheim, Germany, 2004;
(h) X. Lu, C. Zhang and Z. Xu, Acc. Chem. Res., 2001, 34, 535.
5 (a) S. Li and J. Wu, Org. Lett., 2011, 13, 712; (b) S. Li, Y. Luo and
J. Wu, Org. Lett., 2011, 13, 4312; (c) X. Yu, Q. Yang, H. Lou,
Y. Peng and J. Wu, Org. Biomol. Chem., 2011, 9, 7033; (d) X. Yu,
X. Pan and J. Wu, Tetrahedron, 2011, 67, 1145; (e) Z. Chen, X. Pan
and J. Wu, Synlett, 2011, 964; (f) S. Ye, X. Yang and J. Wu, Chem.
Commun., 2010, 46, 5238; (g) X. Yu, S. Ye and J. Wu, Adv. Synth.
Catal., 2010, 352, 2050; (h) X. Yu, Z. Chen, X. Yang and J. Wu,
J. Comb. Chem., 2010, 12, 374; (i) H. Ren, S. Ye, F. Liu and J. Wu,
Tetrahedron, 2010, 66, 8242; (j) Z. Chen, X. Yang and J. Wu, Chem.
Commun., 2009, 3469; (k) Z. Chen, Q. Ding, X. Yu and J. Wu, Adv.
Synth. Catal., 2009, 351, 1692; (l) Z. Chen, M. Su, X. Yu and J. Wu,
Org. Biomol. Chem., 2009, 7, 4641.
6 For reviews, see: (a) S. S. Stahl, Angew. Chem., Int. Ed., 2004,
43, 3400; (b) T. Punniyamurthy, S. Velusamy and J. Iqbal, Chem.
Rev., 2005, 105, 2329; (c) M. S. Sigman and D. R. Jensen, Acc. Chem.
Res., 2006, 39, 221; (d) J. Piera and J.-E. Backvall, Angew. Chem., Int.
¨
Ed., 2008, 47, 3506; (e) K. M. Gligorich and M. S. Sigman, Chem.
Commun., 2009, 3854; (f) B. M. Stoltz, Chem. Lett., 2004, 33, 362.
7 For selected examples using oxygen as an oxidant, see: (a) Z. Shi,
C. Zhang, S. Li, D. Pan, S. Ding, Y. Cui and N. Jiao, Angew. Chem.,
Int. Ed., 2009, 48, 1; (b) Z. Shi, S. Ding, Y. Cui and N. Jiao, Angew.
Chem., Int. Ed., 2009, 48, 7895; (c) Z. Shi, B. Zhang, Y. Cui and
N. Jiao, Angew. Chem., Int. Ed., 2010, 49, 4036; (d) C. Zhang and
N. Jiao, J. Am. Chem. Soc., 2010, 132, 28; (e) C. Zhang and N. Jiao,
´
Angew. Chem., Int. Ed., 2010, 49, 6174; (f) A. Pinte
´
r, A. Sud,
D. Sureshkumar and M. Klussmann, Angew. Chem., Int. Ed.,
2010, 49, 1.
8 H. Wang, Y. Wang, D. Liang, L. Liu, J. Zhang and Q. Zhu, Angew.
Chem., Int. Ed., 2011, 50, 5678.
Financial support from Jiangxi Normal University is gratefully
acknowledged.
9 For selected recent reviews on cooperative catalysts, see:
(a) A. Ajamian and J. L. Gleason, Angew. Chem., Int. Ed., 2004,
43, 3754; (b) J. M. Lee, Y. Na, H. Han and S. Chang, Chem. Soc.
Rev., 2004, 33, 302; (c) J. C. Wasilke, O. S. J. Brey, R. T. Baker and
G. C. Bazan, Chem. Rev., 2005, 105, 1001; (d) D. Enders,
C. Grondal and M. R. Huttl, Angew. Chem., Int. Ed., 2007,
46, 1570; (e) C. J. Chapman and C. G. Frost, Synthesis, 2007, 1;
(f) A. M. Walji and D. W. C. MacMillan, Synlett, 2007, 1477;
(g) C. Wang and Z. Xi, Chem. Soc. Rev., 2007, 36, 1395; (h) Z. Shao
and H. Zhang, Chem. Soc. Rev., 2009, 38, 2745; (i) C. Zhong and
X. Shi, Eur. J. Org. Chem., 2010, 2999.
Notes and references
1 For selected examples, see: (a) K. W. Bentley, The Isoquinoline Alkaloids,
Harwood Academic, Australia, 1998, vol. 1; (b) M. Balasubramanian
and J. G. Keay, Isoquinoline Synthesis, in Comprehensive Heterocyclic
Chemistry II, ed. A. E. McKillop, A. R. Katrizky, C. W. Rees and
E. F. V. Scrivem, Elsevier, Oxford, 1996, vol. 5, pp. 245–300; (c) For a
review on the synthesis of isoquinoline alkaloid, see: M. Chrzanowska
and M. D. Rozwadowska, Chem. Rev., 2004, 104, 3341(d) C. Bailly,
Curr. Med. Chem.: Anti-Cancer Agents, 2004, 4, 363; (e) B. W. Trotter,
K. K. Nanda, N. R. Kett, C. P. Regan, J. J. Lynch, G. L. Stump,
c
This journal is The Royal Society of Chemistry 2012
Chem. Commun., 2012, 48, 3975–3977 3977