N. Chuanopparat et al. / Tetrahedron Letters 53 (2012) 6209–6211
6211
HO
by Horner–Wadsworth–Emmons olefination afforded the Tamiflu
skeleton. Throughout the synthesis, well-established, highly effi-
cient reactions were employed.
TBDMSO
TBDMSCl, imidazole,
DMAP, CH2Cl2, 82%
O
O
1) Tf2O, Py,
CH2Cl2, 0 °C
OBn
OBn
O
HO
O
HO
2) NaN3
acetone/H2O
(9:1), rt,
Acknowledgments
13
11
(89% over 2 steps)
N.C. is a Ph.D. student under the Royal Golden Jubilee Program,
the Thailand Research Fund (TRF). We are grateful for financial
support from the TRF, through the Royal Golden Jubilee Program.
Financial support from the Center of Excellence for Innovation in
Chemistry (PERCH-CIC), Commission on Higher Education, Minis-
try of Education and the Kasetsart University Research and Devel-
opment Institute (KURDI) is also gratefully acknowledged.
TBDMSO
TBDMSO
1. PPh3, THF, rt., 4 h
then H2O, Et3N, rt.,
O
O
OBn
OBn
O
O
2. Ac2O, pyridine, 0 °C to
rt., 2 h
( 70% over 2 steps)
AcHN
N3
14
15
HO
1) (COCl)2, DMSO, Et3N,
CH2Cl2, -78 °C, 2 h,
O
Supplementary data
OBn
TBAF, THF,
0 °C to rt.,
4 h, 95%
AcHN
O
Supplementary data associated with this article can be found, in
2) (EtO)2(O)PCH2CO2Et,
TiCl4, Et3N, CH2Cl2, 0 oC, 2 h
16
3) 10% Pd/C, EtOH, rt., 4 d
(33% over 3 steps)
References and notes
O
O
P
CO2Et
EtO
1. Kim, C. U.; Lew, W.; Williams, M. A.; Liu, H.; Zhang, L.; Swaminathan, S.;
Bischofberger, N.; Chen, M. S.; Mendel, D. B.; Tai, C. Y.; Laver, W. G.; Stevens, R.
C. J. Am. Chem. Soc. 1997, 119, 681–690.
OEt
EtO
O
OH
NaH, THF,
2. For information on H5N1 avian flu and the H5N1 virus, see: http://www.
O
OH
NHAc
0 °C, 2 h, 55%
AcHN
O
18
17
3. (a) Rohloff, J. C.; Kent, K. M.; Postich, M. J.; Becker, M. W.; Chapman, H. H.; Kelly,
D. E.; Lew, W.; Louie, M. S.; McGee, L. R.; Prisbe, E. J.; Schultze, L. M.; Yu, R. H.;
Zhang, L. J. Org. Chem. 1998, 63, 4545; (b) Federspiel, M.; Fisher, R.; Henning,
M.; Mair, H. J.; Oberhauser, T.; Rimmler, G.; Albiez, T.; Bruhin, J.; Estermann, H.;
Gandert, C.; Gockel, V.; Gotzo, S.; Hoffmann, U.; Huber, G.; Janatsch, G.; Lauper,
S.; Rockel-Stabler, O.; Trussardi, R.; Zwahlen, A. G. Org. Process Res. Dev. 1999, 3,
266; (c) Karpf, M.; Trussardi, R. J. Org. Chem. 2001, 66, 2044; (d) Harrington, P.
J.; Brown, J. D.; Foderaro, T.; Hughes, R. C. Org. Process Res. Dev. 2004, 8, 86.
4. Cong, X.; Yao, Z.-J. J. Org. Chem. 2006, 71, 5365–5368.
5. Shie, J.-J.; Fang, J.-M.; Wang, S. Y.; Tsai, K. C.; Cheng, Y. S. E.; Yang, A. S.; Hsiao, C.
C.; Su, Y.; Wong, C. H. J. Am. Chem. Soc. 2007, 129, 11892–11893.
6. (a) Fukuta, Y.; Mita, T.; Fukuda, N.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc.
2006, 128, 6312–6313; (b) Mita, T.; Fukuda, N.; Roca, F. X.; Shibasaki, M. Org.
Lett. 2007, 9, 259–262.
1) PPh3, THF, H2O,
Et3N, rt, overnight,
81%.
CO2Et
1) MsCl, Et3N,
CH2Cl2, 1 h, 98%
1
O
N3
2) NaN3, EtOH/H2O,
reflux, 91%
2) 20% H3PO4/EtOH
50 °C, 30 min, 0 °C,
82%
NHAc
19
Scheme 2. Completion of the synthesis of oseltamivir phosphate 1.
7. (a) Bromfield, K. M.; Graden, H.; Hagberg, D. P.; Olsson, T.; Kann, N. Chem.
Commun. 2007, 3183–3185; (b) Shie, J.-J.; Fang, J.-M.; Wong, C.-H. Angew. Chem.
2008, 120, 5872–5875; Shie, J.-J.; Fang, J.-M.; Wong, C.-H. Angew. Chem., Int. Ed.
2008, 47, 5788–5791; (c) Matveenko, M.; Willis, A. C.; Banwell, M. G.
Tetrahedron Lett. 2008, 49, 7018–7020.
8. Trost, B. M.; Zhang, T. Angew. Chem. 2008, 120, 3819–3821; Trost, B. M.; Zhang,
T. Angew. Chem., Int. Ed. 2008, 47, 3759–3761.
9. (a) Satoh, N.; Akiba, T.; Yokoshima, S.; Fufuyama, T. Tetrahedron 2009, 65,
3239–3245; (b) Satoh, N.; Akiba, T.; Yokoshima, S.; Jukuyama, T. Angew. Chem.
2007, 119, 5836–5838; Satoh, N.; Akiba, T.; Yokoshima, S.; Jukuyama, T. Angew.
Chem., Int. Ed. 2007, 46, 5734–5736.
10. Zutter, U.; Iding, H.; Spurr, P.; Wirz, B. J. Org. Chem. 2008, 73, 4895–4902.
11. Mandai, T.; Oshitari, T. Synlett 2009, 783–786.
12. Mandai, T.; Oshitari, T. Synlett 2009, 787–789.
13. Sullivan, B.; Carrera, I.; Drouin, M.; Hudlicky, T. Angew. Chem. 2009, 121, 4293–
4295; Sullivan, B.; Carrera, I.; Drouin, M.; Hudlicky, T. Angew. Chem., Int. Ed.
2009, 48, 4229–4231.
14. (a) Chuanopparat, N.; Kongkathip, N.; Kongkathip, B. Tetrahedron 2012, 68,
6803–6809; (b) Wichienukul, P.; Akkarasamiyo, S.; Kongkathip, N.;
Kongkathip, B. Tetrahedron Lett. 2010, 51, 3208–3210; (c) Osato, H.; Jones, I.
L.; Chen, A.; Chai, C. L. L. Org. Lett. 2010, 12, 60–63.
TBAF gave the hydroxy compound 16 in excellent yield. Oxidation
of 16 using Swern conditions yielded the corresponding aldehyde,
Knoevenagel condensation of which with ethyl dimethoxyphos-
phoryl acetate followed by hydrogenation gave the C1-elongated
phosphonate 17 in 33% yield over the three steps.
Intramolecular Horner–Wadsworth–Emmons olefination of 17
using sodium hydride in THF afforded 4b-acetamido shikimate
18 in moderate yield. The second amino group was introduced into
18 by activation of the 5b-hydroxy group as the mesylate followed
by azide substitution with sodium azide to give azido acetamido
shikimate 19. Finally, azide 19 was reduced by treatment with tri-
phenylphosphine and water to form an amine, which was directly
exposed to 1.2 equiv of phosphoric acid in ethanol at 50 °C to af-
ford Tamiflu (1) in 82% yield.
In summary, we have achieved a new asymmetric synthesis of
Tamiflu in 13 steps and 5% overall yield from cheap and abundant
15. Weng, J.; Li, Y. B.; Wang, R.-B.; Li, F. Q.; Liu, C.; Chan, A. S. C.; Lu, G. J. Org. Chem.
2010, 75, 3125–3128.
D
-mannose. The unique feature of this route is that the bulky
16. Wadsworth, W. S.; Emmons, W. D. J. Am. Chem. Soc. 1961, 83, 1733.
17. Whistler, R. L.; Wolfrom, M. L. Methods Carbohydr. Chem. 1963, 2, 319.
18. Brimacombe, J. S.; Hunedy, F.; Tucker, L. C. N. J. Chem. Soc. C 1968, 1381.
19. She, C.-R.; Tzeng, Z.-H.; Kulkarni, S. S.; Uang, B.-J.; Hsu, C.-Y.; Hung, S.-C. Angew.
Chem., Int. Ed. 2005, 44, 1665–1666.
3-pentyloxy group and the adjacent acetamide of Tamiflu were
introduced at an early stage of the synthesis by regioselective ketal
ring-opening of
D-lyxofuranoside using Cu(OTf)2 as the catalyst.
Condensation with diethylphosphonoacetate and then cyclization