Chemical Research in Toxicology
Article
(13) Brustovetsky, T., Shalbuyeva, N., and Brustovetsky, N. (2005)
Lack of manifestations of diazoxide/5-hydroxydecanoate-sensitive
KATP channel in rat brain nonsynaptosomal mitochondria. J. Physiol.
568, 47−59.
(14) Kiranadi, B., Bangham, J. A., and Smith, P. A. (1991) Inhibition
of electrical activity in mouse pancreatic beta-cells by the ATP/ADP
translocase inhibitor, bongkrekic acid. FEBS Lett. 283, 93−96.
(15) Toninello, A., Salvi, M., Schweizer, M., and Richter, C. (2004)
Menadione induces a low conductance state of the mitochondrial
inner membrane sensitive to bongkrekic acid. Free Radical Biol. Med.
37, 1073−1080.
of Education, Culture, Sports, Science and Technology of
Japan.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We thank Professor Atsushi Maruyama (Institute for Materials
Chemistry and Engineering, Kyushu University) for kindly
providing HeLa cells.
(16) Kopustinskiene, D. M., Toleikis, A., and Saris, N.-E. L. (2003)
Adenine nucleotide translocase mediates the K(ATP)-channel-open-
ers-induced proton and potassium flux to the mitochondrial matrix. J.
Bioenerg. Biomembr. 35, 141−148.
ABBREVIATIONS
■
BKA, bongkrekic acid; ANT, adenine nucleotide translocase;
MPTP, mitochondrial permeability transition pore; ΔΨm,
mitochondrial inner membrane potential; STS, staurosporine;
CCCP, carbonyl cyanide m-chlorophenyl hydrazone; 1-
methoxy-PMS, 1-methoxy-5-methylphenazinium methylsulfate;
TBDPSCl, tert-butyldiphenylchlorosilane; TMSCl, trimethyl-
chlorosilane; TBAF, tetrabutyl ammonium fluoride; PPh3,
triphenylphosphine; nBuLi, n-butyl lithium; HRMS, high
resolution mass spectrometry; EA, elemental analysis
(17) Teshima, Y., Akao, M., Li, R. A., Chong, T. H., Baumgartner, W.,
́
Johnston, M. V., and Marban, E. (2003) Mitochondrial ATP-sensitive
potassium channel activation protects cerebellar granule neurons from
apoptosis induced by oxidative stress. Stroke 34, 1796−1802.
(18) Ulziikhishig, E., Lee, K. K., Hossain, Q. S., Higa, Y., Imaizumi,
N., and Aniya, Y. (2010) Inhibition of mitochondrial membrane
bound-glutathione transferase by mitochondrial permeability transition
inhibitors including cyclosporin A. Life Sci. 86, 726−732.
́
(19) Zamzami, N., Susin, S. A., Marchetti, P., Hirsch, T., Gomez-
Monterrey, I., Castedo, M., and Kroemer, G. (1996) Mitochondrial
control of nuclear apoptosis. J. Exp. Med. 183, 1533−1544.
(20) Zamzami, N., Marchetti, P., Castedo, M., Hirsch, T., Susin, S. A.,
Masse, B., and Kroemer, G. (1996) Inhibitors of permeability
transition interfere with the disruption of the mitochondrial trans-
membrane potential during apoptosis. FEBS Lett. 384, 53−57.
(21) Marchetti, P., Castedo, M., Susin, S. A., Zamzami, N., Hirsch, T.,
Haeffner, A., Hirsch, F., Geuskens, M., and Kroemer, G. (1996)
Mitochondrial permeability transition is a central coordinating event of
apoptosis. J. Exp. Med. 184, 1155−1160.
REFERENCES
■
(1) van Veen, A. G., and Mertens, W. K. (1934) Die Giftstoffe der
sogenannten Bongkrek-Vergiftungen auf Java. Recueil des Travaux
Chimiques des Pays-Bas 53, 257−266.
(2) Lumbach, G., Cox, H., and Berends, W. (1970) Elucidation of the
chemical structure of bongkrekic acid−I Isolation, purification and
properties of bongkrekic acid. Tetrahedron 26, 5993−5999.
(3) Lijmbach, G., COX, H., and Berends, W. (1971) Elucidation of
the structure of bongkrekic acid-II Chemical structure of bongkrekic
acid and study of the UV, IR, NMR and mass spectra. Tetrahedron 27,
1839−1858.
(4) Debruijn, J., Frost, D., Nugteren, D., Gaudemer, A., Lijmbach, G.,
Cox, H., and Berends, W. (1973) The structure of bongkrekic acid.
Tetrahedron 29, 1541−1547.
(5) Henderson, P. J., and Lardy, H. A. (1970) Bongkrekic acid. An
inhibitor of the adenine nucleotide translocase of mitochondria. J. Biol.
Chem. 245, 1319−1326.
(6) Klingenberg, M., Grebe, K., and Heldt, H. W. (1970) On the
inhibition of the adenine nucleotide translocation by bongkrekic acid.
Biochem. Biophys. Res. Commun. 39, 344−351.
(7) Buchanan, B. B., Eiermann, W., Riccio, P., Aquila, H., and
Klingenberg, M. (1976) Antibody evidence for different conforma-
tional states of ADP, ATP translocator protein isolated from
mitochondria. Proc. Natl. Acad. Sci. U.S.A. 73, 2280−2284.
(8) Hershey, M. S., Chua, B. H., and Shrago, E. (1977) Reversible
inhibition of adenine nucleotide translocation by long chain acyl-CoA
esters in bovine heart mitochondria and inverted submitochondrial
particles. Comparison with atractylate and bongkrekic acid. J. Biol.
Chem. 252, 6711−6714.
(9) Klingenberg, M. (1989) Molecular aspects of the adenine
nucleotide carrier from mitochondria. Arch. Biochem. Biophys. 270, 1−
14.
(10) Halestrap, A. P., and Brenner, C. (2003) The adenine nucleotide
translocase: a central component of the mitochondrial permeability
transition pore and key player in cell death. Curr. Med. Chem. 10,
1507−25.
(22) Wang, Y., Perchellet, E. M., Ward, M. M., Lou, K., Hua, D. H.,
and Perchellet, J.-P. H. (2005) Rapid collapse of mitochondrial
transmembrane potential in HL-60 cells and isolated mitochondria
treated with anti-tumor 1,4-anthracenediones. Anticancer Drugs 16,
953−67.
(23) Kallio, A., Zheng, A., Dahllund, J., Heiskanen, K. M., and
Harkonen, P. (2005) Role of mitochondria in tamoxifen-induced rapid
̈
̈
death of MCF-7 breast cancer cells. Apoptosis 10, 1395−1410.
(24) Muranyi, M., and Li, P.-A. (2005) Bongkrekic acid ameliorates
ischemic neuronal death in the cortex by preventing cytochrome c
release and inhibiting astrocyte activation. Neurosci. Lett. 384, 277−81.
(25) Shindo, M., Sugioka, T., Umaba, Y., and Shishido, K. (2004)
Total synthesis of (+)-bongkrekic acid. Tetrahedron Lett. 45, 8863−
8866.
(26) Sato, Y., Aso, Y., and Shindo, M. (2009) Efficient synthesis of
bongkrekic acid. Three-component convergent strategy. Tetrahedron
Lett. 50, 4164−4166.
(27) Kanematsu, M., Shindo, M., Yoshida, M., and Shishido, K.
(2009) Total synthesis of bongkrekic acid via sequential Suzuki-
Miyaura coupling reactions. Synthesis 2009, 2893−2904.
(28) Cossarizza, A., Baccarani-Contri, M., Kalashnikova, G., and
Franceschi, C. (1993) A new method for the cytofluorimetric analysis
of mitochondrial membrane potential using the J-aggregate forming
lipophilic cation 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazol-
carbocyanine iodide (JC-1). Biochem. Biophys. Res. Commun. 197, 40−
5.
(29) Wuts, P., and Thompson, P. (1982) Preparation of
halomethaneboronates. J. Organomet. Chem. 234, 137−141.
(30) Bertrand, R., Solary, E., O’Connor, P., Kohn, K., and Pommier,
Y. (1994) Induction of a common pathway of apoptosis by
staurosporine. Exp. Cell Res. 211, 314−321.
(31) Boix, J., Llecha, N., Yuste, V. J., and Comella, J. X. (1997)
Characterization of the cell death process induced by staurosporine in
human neuroblastoma cell lines. Neuropharmacology 36, 811−821.
(11) Bernardi, P., Krauskopf, A., Basso, E., Petronilli, V., Blachly-
Dyson, E., Blalchy-Dyson, E., Di Lisa, F., and Forte, M. A. (2006) The
mitochondrial permeability transition from in vitro artifact to disease
target. FEBS J. 273, 2077−99.
(12) Klein, B., Worndl, K., Lutz-Meindl, U., and Kerschbaum, H. H.
̈
̈
(2011) Perturbation of intracellular K(+) homeostasis with
valinomycin promotes cell death by mitochondrial swelling and
autophagic processes. Apoptosis 16, 1101−1117.
2259
dx.doi.org/10.1021/tx300315h | Chem. Res. Toxicol. 2012, 25, 2253−2260