ACS Chemical Biology
Articles
G1P) were determined with data fitted to the Michaelis−Menten
equation using GraFit. Data sets for each substrate (dTTP and G1P)
were also fitted to the Hill equation. Further details are given in the
Supporting Information.
Pseudomonas aeruginosa RmlA Gene Knockout Virulence
Studies. Wild-type and RmlA knockout mutant strains of P.
aeruginosa were prepared and used to infect NMRI outbred mice.
Bacterial quantification using mouse lung homogenates is detailed in
the Supporting Information.
Mycobacterium tuberculosis MIC Determination. MIC values
were determined against M. tuberculosis (H37Rv) by the microbroth
dilution method as described in the Supporting Information.42
Accession Codes. Protein Data Bank codes 4ARW (RmlA-1),
4AS6 (RmlA-2), 4B42 (RmlA-3), 4B2X (RmlA-4), 4B4B (RmlA-6),
4ASJ (RmlA-8a), 4ASY (RmlA-8f), 4ASP (RmlA-15a), 4B3U (RmlA-
12b), 4B4G (RmlA-8j), 4B4M (RmlA-8k), 4B5B (RmlA-8p).
(8) Singh, S., Phillips, G. N., Jr., and Thorson, J. S. (2012) The
structural biology of enzymes involved in natural product
glycosylation. Nat. Prod. Rep. 29, 1201−1237.
(9) Qu, H., Xin, Y., Dong, X., and Ma, Y. (2007) An rmlA gene
encoding d-glucose-1-phosphate thymidylyltransferase is essential for
mycobacterial growth. FEMS Microbiol. Lett. 275, 237−243.
(10) Li, W., Xin, Y., McNeil, M. R., and Ma, Y. (2006) rmlB and
rmlC genes are essential for growth of mycobacteria. Biochem. Biophys.
Res. Commun. 342, 170−178.
(11) Babaoglu, K., Page, M. A., Jones, V. C., McNeil, M. R., Dong, C.,
Naismith, J. H., and Lee, R. E. (2003) Novel inhibitors of an emerging
target in Mycobacterium tuberculosis; substituted thiazolidinones as
inhibitors of dTDP-rhamnose synthesis. Bioorg. Med. Chem. Lett. 13,
3227−3230.
(12) Mills, J. A., Motichka, K., Jucker, M., Wu, H. P., Uhlik, B. C.,
Stern, R. J., Scherman, M. S., Vissa, V. D., Pan, F., Kundu, M., Ma, Y.
F., and McNeil, M. (2004) Inactivation of the mycobacterial
rhamnosyltransferase, which is needed for the formation of the
arabinogalactan-peptidoglycan linker, leads to irreversible loss of
viability. J. Biol. Chem. 279, 43540−43546.
(13) Sivendran, S., Jones, V., Sun, D., Wang, Y., Grzegorzewicz, A. E.,
Scherman, M. S., Napper, A. D., McCammon, J. A., Lee, R. E.,
Diamond, S. L., and McNeil, M. (2010) Identification of triazinoindol-
benzimidazolones as nanomolar inhibitors of the Mycobacterium
tuberculosis enzyme TDP-6-deoxy-D-xylo-4-hexopyranosid-4-ulose
3,5-epimerase (RmlC). Biorg. Med. Chem. 18, 896−908.
(14) Sivaraman, J., Sauve, V., Matte, A., and Cygler, M. (2002)
Crystal structure of Escherichia coli glucose-1-phosphate thymidylyl-
transferase (RffH) complexed with dTTP and Mg2+. J. Biol. Chem.
277, 44214−44219.
(15) Blankenfeldt, W., Asuncion, M., Lam, J. S., and Naismith, J. H.
(2000) The structural basis of the catalytic mechanism and regulation
of glucose-1-phosphate thymidylyltransferase (RmlA). EMBO J. 19,
6652−6663.
(16) Kim, H., Choi, J., Kim, T., Lokanath, N. K., Ha, S. C., Suh, S. W.,
Hwang, H. Y., and Kim, K. K. (2010) Structural basis for the reaction
mechanism of UDP-glucose pyrophosphorylase. Molecules Cells 29,
397−405.
(17) Melo, A., and Glaser, L. (1965) The nucleotide specificity and
feedback control of thymidine diphosphate D-glucose pyrophosphor-
ylase. J. Biol. Chem. 240, 398−405.
ASSOCIATED CONTENT
* Supporting Information
■
S
IC50 and Hill coefficient determination of 1 and 2; data
collection and refinement statistics; enzyme−inhibitor inter-
action schematics; structural overlays; RmlA-knockout in mice;
MIC values in M. tuberculosis; Km determination; SPR binding
data; unbiased Fo − Fc maps for each ligand; Methods details;
synthesis of inhibitors; NMR spectra of inhibitors from Table 1.
This material is available free of charge via the Internet at
AUTHOR INFORMATION
Corresponding Author
■
Author Contributions
+These authors contributed equally to this work.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
The authors wish to thank the Diamond Light Source staff for
assistance with data collection and K. Barrack for assistance
with ITC. This work was supported by grants from the
European Community’s Seventh Framework Programme
(Aeropath; grant agreement no. 223461), The Scottish
Universities Life Science Alliance (L.P., Ph.D. studentship)
and the Royal Society (N.W., URF Fellowship).
(18) Barton, W. A., Lesniak, J., Biggins, J. B., Jeffrey, P. D., Jiang, J.,
Rajashankar, K. R., Thorson, J. S., and Nikolov, D. B. (2001) Structure,
mechanism and engineering of a nucleotidylyltransferase as a first step
toward glycorandomization. Nat. Struct. Biol. 8, 545−551.
(19) Barton, W. A., Biggins, J. B., Jiang, J., Thorson, J. S., and
Nikolov, D. B. (2002) Expanding pyrimidine diphosphosugar libraries
via structure-based nucleotidylyltransferase engineering. Proc. Natl.
Acad. Sci. U.S.A. 99, 13397−13402.
The coordinates of the RmlA complexes have been deposited
in the Protein Data Bank.
(20) Williams, G. J., Yang, J., Zhang, C., and Thorson, J. S. (2011)
Recombinant E. coli prototype strains for in vivo glycorandomization.
ACS Chem. Biol. 6, 95−100.
REFERENCES
■
(1) Strateva, T., and Yordanov, D. (2009) Pseudomonas aeruginosa−a
phenomenon of bacterial resistance. J. Med. Microbiol. 58, 1133−1148.
(2) Livermore, D. M. (1984) Penicillin-binding proteins, porins and
outer-membrane permeability of carbenicillin-resistant and -susceptible
strains of Pseudomonas aeruginosa. J. Med. Microbiol. 18, 261−270.
(3) Livermore, D. M. (2001) Of Pseudomonas, porins, pumps and
carbapenems. J. Antimicrob Chemother. 47, 247−250.
(21) Cid, J. M., Duvey, G., Tresadern, G., Nhem, V., Furnari, R.,
Cluzeau, P., Vega, J. A., de Lucas, A. I., Matesanz, E., Alonso, J. M.,
Linares, M. L., Andres, J. I., Poli, S. M., Lutjens, R., Himogai, H.,
Rocher, J. P., Macdonald, G. J., Oehlrich, D., Lavreysen, H., Ahnaou,
A., Drinkenburg, W., Mackie, C., and Trabanco, A. A. (2012)
Discovery of 1,4-disubstituted 3-cyano-2-pyridones: a new class of
positive allosteric modulators of the metabotropic glutamate 2
receptor. J. Med. Chem. 55, 2388−2405.
(4) Hirsch, E. B., and Tam, V. H. (2010) Impact of multidrug-
resistant Pseudomonas aeruginosa infection on patient outcomes. Expert
Rev. Pharmacoecon. Outcomes Res. 10, 441−451.
(22) Trabanco, A. A., Cid, J. M., Lavreysen, H., Macdonald, G. J., and
Tresadern, G. (2011) Progress in the developement of positive
allosteric modulators of the metabotropic glutamate receptor 2. Curr.
Med. Chem. 18, 47−68.
(23) Barda, D. A., Wang, Z. Q., Britton, T. C., Henry, S. S.,
Jagdmann, G. E., Coleman, D. S., Johnson, M. P., Andis, S. L., and
Schoepp, D. D. (2004) SAR study of a subtype selective allosteric
potentiator of metabotropic glutamate 2 receptor, N-(4-phenox-
(5) Page, M. G., and Heim, J. (2009) Prospects for the next anti-
Pseudomonas drug. Curr. Opin. Pharm. 9, 558−565.
(6) LoBue, P. (2009) Extensively drug-resistant tuberculosis. Curr.
Opin. Infect. Dis. 22, 167−173.
(7) World Health Organisation (2011) Towards universal access to
diagnosis and treatment of multidrug-resistant and extensively drug-
resistant tuberculosis by 2015, pp 1−119, WHO, Geneva.
395
dx.doi.org/10.1021/cb300426u | ACS Chem. Biol. 2013, 8, 387−396