L. Fumagalli et al. / European Journal of Medicinal Chemistry 58 (2012) 184e191
191
[15] C. Bolchi, P. Catalano, L. Fumagalli, M. Gobbi, M. Pallavicini, A. Pedretti, L. Villa,
G. Vistoli, E. Valoti, Structure-affinity studies for a novel series of homochiral
naphtho and tetrahydronaphtho analogues of a1 antagonist WB-4101, Bioorg.
Med. Chem. 12 (2004) 4937e4951.
[16] M. Pallavicini, R. Budriesi, L. Fumagalli, P. Ioan, A. Chiarini, C. Bolchi,
M.P. Ugenti, S. Colleoni, M. Gobbi, E. Valoti, WB4101-Related compounds:
new, subtype-selective a1-adrenoreceptor antagonists (or inverse agonists ?),
J. Med. Chem. 49 (2006) 7140e7149.
(ꢀ)-noradrenaline dose-response curves were recorded, the first
two being discarded and the third one taken as a control. The
antagonist was allowed to equilibrate with the tissue for 30 min
before the generation of a fourth cumulative dose-response curve
with (ꢀ)-noradrenaline.
[17] L. Fumagalli, C. Bolchi, S. Colleoni, M. Gobbi, B. Moroni, M. Pallavicini,
A. Pedretti, L. Villa, G. Vistoli, E. Valoti, QSAR study for a novel series of ortho
monosubstituted phenoxy analogues of a1-adrenoceptor antagonist WB4101,
Bioorg. Med. Chem. 13 (2005) 2547e2559.
[18] M. Pallavicini, L. Fumagalli, M. Gobbi, C. Bolchi, S. Colleoni, B. Moroni,
A. Pedretti, C. Rusconi, G. Vistoli, E. Valoti, QSAR study for a novel series of
ortho disubstituted phenoxy analogues of a1-adrenoceptor antagonist
WB4101, Eur. J. Med. Chem. 41 (2006) 1025e1040.
[19] J.C. Dearden, M.T.D. Cronin, C. Higgins, D.R. Mottram, H. Kapur, QSAR study of
the a1-adrenoceptor antagonist activity of WB4101 derivatives, Pharm.
Pharmacol. Commun. 4 (1998) 89e93.
[20] E. Castagnino, G. Strappaghetti, S. Corsano, P. Gallucci, L. Brasili, D. Giardinà,
Synthesis and pharmacological evaluation of some WB4101 analogues
bearing a naphthodioxanic nucleus, Farmaco 39 (1984) 569e574.
[21] M.T. Piascik, D. Perez, Alpha1-adrenergic receptors: new insights and direc-
tions, J. Pharmacol. Exp. Ther. 298 (2001) 403e410.
[22] D.J. Waugh, R.J. Gaivin, M.J. Zuscik, P. Gonzalez-Cabrera, S.A. Ross, J. Yun,
D.M. Perez, Phe-308 and Phe-312 in transmembrane domain 7 are major sites
of a1-adrenergic receptor antagonist binding. Imidazoline agonists bind like
antagonist, J. Biol. Chem. 276 (2001) 25366e25371.
[23] L. Villa, E. Valoti, A.M. Villa, M. Pallavicini, V. Ferri, E. Iuliano, N. Brunello,
Molecular properties of the WB4101 enantiomers and of its chiral methyl
derivatives for a1-adrenoceptor recognition, Farmaco 49 (1994) 587e606.
[24] M. Pigini, L. Brasili, M. Giannella, D. Giardinà, U. Gulini, W. Quaglia,
C. Melchiorre, Structure-activity relationships in 1,4-benzodioxan-related
5.2.3. Inverse agonism
The guinea pig thoracic aorta was used to assess the activity of
a1-antagonist as inverse agonist [16,36]. Aortic strips were isolated
and cleaned as previously described and placed in organ bath
containing the Krebs solution maintained at 37 ꢂC of the following
composition (mM): NaCl, 118; KCl, 4.75; CaCl2, 1.8; MgCl2, 1.2;
NaHCO3, 25.0; KH2PO4, 1.2; glucose, 11. Tissue were equilibrated for
1 h under an optimal tension of 1 g, and the effect of a single dose of
(ꢀ)-noradrenaline (1
mM) was recorded. During 1 h of wash in
Ca2þ-free Krebs solution containing EDTA (0.1 mM) the agonist was
applied and washed with Ca2þ-free solution until no contraction
was elicited, indicating depletion of internal Ca2þ stores sensitive to
NA. After incubation with the antagonist for 30 min, addition of
Ca2þ (1.8 mM) induced increase in the resting tension (IRT). The
magnitude of the inhibition was expressed as a percent decrease of
the reference IRT, namely of the IRT induced by calcium (1.8 mM) in
the absence of any agent.
Acknowledgements
compounds. Investigation on the role of the dehydrodioxane ring on a1
adrenoreceptor blocking activity, J. Med. Chem. 31 (1988) 2300e2304.
-
This work was supported by grants of the University of Milan
and of the University of Bologna.
[25] W. Quaglia, M. Pigini, A. Piergentili, M. Giannella, G. Marucci, E. Poggesi,
A. Leonardi, C. Melchiorre, Structure-activity relationships in 1,4-
benzodioxan-related compounds. 6. Role of the dioxane unit on selectivity
for a1-adrenoreceptor subtypes, J. Med. Chem. 42 (1999) 2961e2968.
[26] W. Quaglia, M. Pigini, A. Piergentili, M. Giannella, F. Gentili, G. Marucci,
A. Carrieri, A. Carotti, E. Poggesi, A. Leonardi, C. Melchiorre, Structure-activity
relationships in 1,4-benzodioxan-related compounds. 7. Selectivity of 4-
phenylchroman analogues for a1-adrenoreceptor subtypes, J. Med. Chem. 45
(2002) 1633e1643.
Appendix A. Supplementary data
Supplementary data related to this article can be found at http://
[27] E. Valoti, M. Pallavicini, L. Villa, D. Pezzetta, Synthesis of homochiral 5- and 8-
References
substituted
2-[((2-(2,6-dimethoxyphenoxy)ethyl)amino)methyl]-1,4-
benzodioxanes and electrophoretic determination of their enantiomeric
excess, J. Org. Chem. 66 (2001) 1018e1025.
[28] C. Bolchi, L. Fumagalli, B. Moroni, M. Pallavicini, E. Valoti, A short entry to
enantiopure 2-substituted 1,4-benzodioxanes by efficient resolution methods,
Tetrahedron: Asymmetry 14 (2003) 3779e3885.
[29] C. Bolchi, M. Pallavicini, L. Fumagalli, N. Marchini, B. Moroni, C. Rusconi,
E. Valoti, Highly efficient resolutions of 1,4-benzodioxane-2-carboxylic acid
with para substituted 1-phenylethylamines, Tetrahedron: Asymmetry 16
(2005) 1639e1643.
[1] P. Ma, R. Zemmel, Value of novelty? Nat. Rev. Drug Discov. 1 (2002) 571e572.
[2] D.B. Bylund, D.C. Eikenberg, J.P. Hieble, S.Z. Langer, R.J. Lefkowitz,
K.P. Minnerman, P.B. Molinoff, R.R. Ruffolo Jr., U. Trendelenburg IV, Interna-
tional union of pharmacology nomenclature of adrenoceptors, Pharmacol.
Rev. 46 (1994) 121e136.
[3] M.C. Michel, B.A. Kenny, D.A. Schwinn, Classification of
a1-adrenoceptor
subtypes, Naunyn-Schmiedeberg’s Arch. Pharmacol. 352 (1995) 1e10.
[4] H. Zhong, K.P. Minnerman, a1-Adrenoceptor subtypes, Eur. J. Pharmacol. 375
[30] N. Marchini, G. Bombieri, R. Artali, C. Bolchi, M. Pallavicini, E. Valoti, Influence
of (S)-1-phenylethylamine para substitution on the resolution of (ꢁ)-1,4-
benzodioxane-2-carboxylic acid: a crystallographic, theoretical and morpho-
logic approach, Tetrahedron: Asymmetry 16 (2005) 2099e2106.
[31] C. Bolchi, M. Pallavicini, L. Fumagalli, C. Rusconi, M. Binda, E. Valoti, Resolution
of 2-substituted benzodioxanes by entrainment, Tetrahedron:Asymmetry 18
(2007) 1038e1041.
(1999) 261e276.
[5] G.A. Michelotti, D.T. Price, D.A. Schwinn,
basic science and clinical implications, Pharmacol. Ther. 88 (2000) 281e309.
[6] J.R. Docherty, Subtypes of functional a1-adrenoceptor, Cell. Mol. Life Sci. 67
a1-Adrenergic receptor regulation:
(2010) 405e417.
[7] M. Rosini, M.L. Bolognesi, D. Giardinà, A. Minarini, V. Tumiatti, C. Melchiorre,
Recent advances in 1-adrenoreceptor antagonists as pharmacological tools
a
[32] M. Pallavicini, E. Valoti, L. Villa, O. Piccolo, Synthesis of (R)- and (S)-iso-
propylidene glycerol, Tetrahedron: Asymmetry 5 (1994) 5e8.
[33] M. Elze, R. Boer, K.H. Sander, N. Kolossa, Vasoldilatation elicited by 5-HT1A
receptor agonists in constant-pressure-perfused kidney is mediated by blo-
kade of a1A-adrenoreceptors, Eur. J. Pharmacol. 202 (1991) 33e44.
[34] F.N. Ko, J.H. Guh, S.M. Yu, Y.S. Hou, Y.C. Wu, C.M. Teng, (-)-Discretamine,
and therapeutic agents, Curr. Top. Med. Chem. 7 (2007) 147e162.
[8] W.H. Frishman, F. Kotob, Alpha-adrenergic blocking drugs in clinical medicine,
J. Clin. Pharmacol. 39 (1999) 7e16.
[9] B. Kenny, S. Ballard, J. Blagg, D.J. Fox, Pharmacological options in the treatment
of benign prostatic hyperplasia, J. Med. Chem. 40 (1997) 1293e1315.
[10] J. Kojima, S. Sasaki, N. Oda, T. Koshimizu, Y. Hayashi, M. Kiniwa, G. Tsujimoto,
K. Kohri, Prostate growth inhibition by subtype-selective alpha(1)-adreno-
ceptor antagonist naftopidil in benign prostatic hyperplasia, Prostate 69
(2009) 1521e1528.
[11] R.R. Ruffolo Jr., J.P. Hieble, Adrenoceptor pharmacology: urogenital applica-
tions, Eur. Urol. 36 (1999) 17e22.
[12] G. Marucci, P. Angeli, M. Buccioni, U. Gulini, C. Melchiorre, G. Sagratini,
R. Testa, D. Giardinà, (þ)-Cyclazosin, a selective a1B-adrenoceptor antagonist:
functional evaluation in rat and rabbit tissues, Eur. J. Pharmacol. 522 (2005)
100e107.
[13] F.D. Nojimoto, A. Mueller, F. Hebeler-Barbosa, J. Akinaga, V. Lima, L.R.de
A. Kiguti, A.S. Pupo, The tricyclic antidepressants amitriptyline, nortriptyline
and imipramine are weak antagonists of human and rat a1B-adrenoceptors,
Neuropharmacol 59 (2010) 49e57.
[14] C.K. Becker, C.R. Melville, J.R. Pfister, X. Zhang, Preparation of dialkox-
yaminoquinazolines as alpha-1 adrenergic antagonists, PCT Int. Appl. (2002)
1e59. WO 2002018348.
a
selective a1D-adrenoreceptor antagonist, isolated from Fissistigma glau-
cescens, Br. J. Pharmacol. 112 (1994) 1174e1180.
[35] V. Pulito, X. Li, S.S. Varga, L.S. Mulcahy, K.S. Clark, S.A. Herbert, A.B. Reitz,
W.V. Murray, L.K. Joliffe, An investigation of the uroselective properties of four
novel alpha1a-adrenergic receptor subtype-selective antagonists, J. Pharmacol.
Exp. Ther. 294 (2000) 224e229.
[36] M.A. Noguera, M.D. Ivorra, P. D’Ocon, Functional evidence of inverse agonism
in vascular smooth muscle, Br. J. Pharmacol. 119 (1996) 158e164.
[37] R. Testa, C. Taddei, E. Poggesi, C. Destefani, S. Cotecchia, J.P. Hieble,
A.C. Sulpizio, D. Naselsky, D. Bergsma, S. Ellis, A. Swif, S. Ganguly, R.R. Ruffolo,
A. Leonardi, Red 15/2739 (SB 216469): a novel prostate selective a1-adreno-
ceptor antagonist, A. Pharmacol. Commun. 6 (1995) 79e86.
[38] O. Arunlakshana, H.O. Schild, Some quantitative uses of drug antagonists, Br.
J. Pharmacol. 14 (1959) 48e58.
[39] R.J. Tallarida, A. Cowan, M.W. Adler, pA2 and receptor differentiation:
a statistical analysis of competitive antagonism, Life Sci. 25 (1979) 637e654.