Y. Dwivedi et al. / Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 105 (2013) 483–487
487
References
[1] A.E. Rashad, A.H. Shamroukh, M.I. Hegab, H.M. Awad, Acta Chim. Slov. 52
(2005) 429.
[2] B.A. Bhat, K.L. Dhar, A.K. Saxena, M. Shanmugavel, Bioorg. Med. Chem. 15
(2005) 3177.
[3] E.M. Sharshira, N.M. Hamada, Molecules 16 (2011) 7736.
[4] C.W. Dirk, H.E. Katz, M.L. Shilling, L.A. King, Chem. Mater. 2 (1990) 700.
[5] A.F. Brito, J.L.R. Martins, J.O. Fajemiroye, P.M. Galdino, T.C.M. Lima, R.
Menegatti, E.A. Costa, Life Sci. 90 (2012) 910.
[6] R. Menegatti, G.M.S. Silva, G. Zapatasudo, J.M. Raimundo, R.T. Sudo, E.J.
Barreiro, C.A.M. Fraga, Bioorg. Med. Chem. 14 (2006) 632.
[7] L.S. Santos, M.C. Padilha, F.R. Aquino Neto, A.S. Pereira, R. Menegatti, C.A.M.
Fraga, E.J. Bareiro, M.N. Eberlin, Int. J. Mass Spectrom. 40 (2005) 815.
[8] R.D. Miller, C.R. Moylan, O. Reiser, C.A. Walsh, Chem. Mater. 5 (1993) 625.
[9] A. Miniewicz, K. Palewska, L. Sznitko, J. Lipinski, J. Phys. Chem. A 115 (2011)
10689.
[10] S. Chatterjee, A. Mukharjee, K.K. Mahalanabis, S.C. Bhattacharya, J. Surface Sci.
Technol. 24 (2008) 195.
[11] A. Radi, S. Radi, B. Hammouti, J. Mater. Environ. Sci. 1 (2010) 96.
[12] K.A. Vishnumurthy, A.V. Adhikari, M.S. Sunitha, R. Philip, AIP Conf. Proc. 1391
(2011) 652.
[13] S. Tabak, I.I. Grandberg, A.N. Kosrt, Tetrahedron 22 (1966) 2703.
[14] P. Ovejero, M.J. Mayoral, M. Cano, M.C. Lagunas, J. Organometallic Chem. 692
(2007) 1690.
[15] G.S. He, L.S. Tan, Q.D. Zheng, P.N. Prasad, Chem. Rev. 108 (2008) 1245.
[16] M. Rumi, S. Barlow, J. Wang, J.W. Perry, S.R. Marder, Adv. Polym. Sci. 213
(2008) 1.
Fig. 5. HRS signal obtained for (2) in DMSO for different solution concentrations
and with the signal corrected by its absorbance. The inset shows the linear
dependence between the quadratic coefficient and the concentrations of (2) in
DMSO with and without (black star) corrections for the absorption on 532 nm.
[17] B. Gu, W. Ji, P.S. Patil, S.M. Dharmaprakash, J. App. Phys. 103 (2008) 103511.
[18] B.H. Cumpston, S.P. Ananthavel, S. Barlow, D.L. Dyer, J.E. Ehrlich, L.L. Erskine,
A.A. Heikal, S.M. Kuebler, I.-Y.S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M.
Rumi, X.-L. Wu, S.R. Marder, J.W. Perry, Nature 398 (1999) 51.
[19] C.F. Zhao, R. Gvishi, U. Narang, G. Rulandand, P.N. Prasad, J. Phys. Chem. 100
(1997) 4526.
improve the agreement with the experiment. In fact, the static bHRS
value estimated in solution is of 37.05 ꢀ 10ꢁ30 esu, which is
approximately three times larger than the value obtained in gas-
phase. In addition, the frequency dispersion effects induced by an
incident beam lead to an increase of bHRS by 7% compared to the
static values. Thus, the dynamic MP2 result in solution for bHRS is
of 40 ꢀ 10ꢁ30 cm5/esu. Comparing the theoretical and experimen-
tal bHRS values, we find that the theoretical bHRS in DMSO is under-
estimated in only 12%.
[20] J.D. Bhawalkar, G.S. He, C.K. Park, C.F. Zhao, G. Ruland, P.N. Prasad, Opt. Comm.
124 (1996) 33.
[21] L. De Boni, D.S. Correa, D.L. Silva, P.J. Gonçalves, S.C. Zilio, G.G. Parra, I.E.
Borissevitch, S. Canuto, C.R. Mendonca, J. Chem. Phys. 134 (2011) 014509.
[22] S. Kawata, H.B. Sun, T. Tanaka, K. Takada, Nature 412 (2001) 697.
[23] P.J. Black, G. Cami-Kobeci, M.G. Edwards, P.A. Slatford, M.K. Whittlesey, J.M.J.
Williams, Org. Biomol. Chem. 4 (2006) 116.
[24] M. Sheik-Bahae, A.A. Said, E.W. van Stryland, Opt. Lett. 14 (1989).
[25] M. Sheik-Bahae, A.A. Said, T.H. Wei, D.J. Hagan, E.W. Van Stryland, IEEE J.
Quant. Elec. 26 (1990) 760.
Conclusions
[26] I. Guedes, L. Misoguti, L. De Boni, S.C. Zilio, J. Appl. Phys. 101 (2007) 63112.
[27] D. Gindre, A. Boeglin, A. Fort, L. Mager, K.D. Dorkenoo, Opt. Exp. 14 (2006)
9896.
[28] P.L. Franzen, L. Misoguti, S.C. Zilio, Opt. Exp. 47 (2008) 1443.
[29] E. Cancès, B. Mennucci, J. Tomasi, J. Chem. Phys. 107 (1997) 3032.
[30] M.J. Frisch et al., Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford, CT,
2009.
[31] E. Runge, E.K.U. Gross, Phys. Rev. Lett. 52 (1984) 997.
[32] T. Yanai, D.P. Tew, N.C. Handy, Chem. Phys. Lett. 393 (2004) 56.
[33] T.L. Fonseca, H.C.B. de Oliveira, M.A. Castro, Chem. Phys. Lett. 457 (2008) 119.
[34] H. Sekino, R.J. Bartlett, J. Chem. Phys. 85 (1986) 976.
[35] E.K. Dalskov, H.J.A.A. Jensen, J. Oddershede, Mol. Phys. 90 (1997) 3.
[36] E. Hendrickx, K. Clays, A. Persoons, Acc. Chem. Res. 31 (1998) 675.
[37] K. Clays, A. Persoons, Phys. Rev. Lett. 66 (1991) 2980.
In summary, a novel organic compound namely (E)-1-(4-chloro-
phenyl)-4-(2-nitrovinyl)-1H-pyrazole was synthesized and its
nonlinear optical properties were investigated using 2PA and
HRS measurements, as well ab initio calculations at the MP2 level
with the 6-311+G(d) basis set. It is found that this molecule is non-
linear active with 2PA cross-sections of ꢅ58 and 67 GM at 520 and
690 nm, respectively. The MP2 results show that the role of the sol-
vent is crucial to meet the concordance with experiment. Disper-
sion effects increase the static bHRS value around 7%. The solution
dynamic MP2 result for bHRS is estimated to be 40 ꢀ 10ꢁ30 cm5/
esu. This theoretical value of bHRS is in good agreement with the
measured value of 45 2 ꢀ 10ꢁ30 cm5/esu.
Acknowledgements
The authors are grateful to Fundação de Amparo à Pesquisa do
Estado de São Paulo (FAPESP) and Conselho Nacional de Desen-
volvimento Científico e Tecnológico (CNPq) for financial support.